mike2000 is back
ELITE MEMBER
- Joined
- Apr 12, 2015
- Messages
- 8,513
- Reaction score
- 19
- Country
- Location
The contract has recently completed, the SW-4 Solo completing 27 hours of flight trials with 22 autonomous landings. The trials also included integration with the DNA(2) ship combat management software and mission planning activities.
The trials results will inform future programmes.
Unmanned Warrior 2016 is a trials and demonstration event designed to offer over 40 manufacturers and research organisations an opportunity to showcase their systems in a realistic environment.
Coming soon... Unmanned Warrior
Commander Peter Pipkin, Fleet Robotics Officer, commented;
Unmanned Warrior is going to provide a showcase for the demonstration of products in a tactically relevant environment. The overall value will be in transforming the market as a whole by creating increased demand for these technologies, not seeking specific business opportunities within the event. We have deliberately adopted a different approach to capability demonstration, in that the MOD is inviting participants to offer their thoughts on what future capability might look like and where technology can be exploited without any preconception. This recognises that we (Defence) do not always have a crystal ball but are willing to look at the full breadth of possible technology exploitation paths.
None of these systems forms part of the Type 26 GCS programme but are included for completeness.
Aircraft and Stores Handling
Ship-borne aircraft handling systems are required to capture, move and restrain different types of aircraft in high sea states and adverse weather.
MacTaggart Scott pioneered helicopter recovery systems.
The deck lock system requires the pilot to hover over a steel grid in order to deploy the locking ‘harpoon’. Once engaged the hydraulic actuator system, from Claverham, pulls the helicopter onto the deck, compressing the oleo leg in conjunction with negative thrust from the rotor. This system can secure the helicopter to the deck without needing any personnel to approach it, an important safety consideration. The deck lock grid is available from a number of manufacturers and widely used.
Additional securing straps are often used and the deck lock released, it is a flexible system and because the actuator sits on the centre of rotation the helicopter can be easily manoeuvred into the most favourable position for subsequent takeoff. The pilot has immediate confirmation that the helicopter is secure and is not reliant on others
Once secured to the deck, a means of transporting to the hangar is required and these fall into two broad types, rail assist and tug. The MacTaggart Scott TRIGON system is used by many operators and makes use of computer controlled steel wire ropes to secure and move helicopters. It uses a series of cables, with the three rail PRISM system specifically on Type 23 for Merlin, this document makes a good case for the all round superiority of TRIGON.
MacTaggart Trigon helicopter recovery and handling system
Any future rotary RPAS will need to be able to launch and recover in high sea states so securing and moving in high sea states will be of great importance.
Although no details have been released specifically for Type 26 GCS aircraft securing and handling it is likely to make use of designs already in service.
For Type 26 GCS, the Air Weapons Handling System (AWHS) will be designed by Babcock
The system will store and move air weapons from their stowage locations to weapon preparation areas prior transfer onto aircraft or into torpedo launch systems. Re-stowage of unused munitions is also part of system operation and a high degree of automation will reduce manual handling.
Inside the hangar, an overhead gantry crane will likely be installed, perhaps similar to the design by Seward Wyon for the Type 45 Destroyer. Given the route from the flight deck, through the hangar and into the mission bay, this may require a bespoke design. The hangar is sized to accomodate a single Merlin helicopter, or two Wildcat’s.
Future rotary UAV’s may also be housed in the hangar.
Helicopter Landing visual aids and lighting will be supplied by AGI Limited including Homing Beacon Lighting, pilot eye line lights, visual approach lights, control systems and the Advanced Stabilised Glide Slope Indicator (ASGSI)
The flight deck safety net assemblies will likely be provided by Vonroll, as they do for other Royal Navy vessels.
Adaptable Mission Bay
The mission bay is an important part of the concept of operations for the Type 26.
Equipment modules, vehicles, boats, UAV/USV’s or stores can be carried from the beginning of a deployment or if required, flown, sailed or driven out to a nearby port, and loaded from either side.
In the first concept drawings, it was shown as housed underneath the flight deck but as the design matured, moved to a more central position, forward of the helicopter hangar and below the main weather deck.
This arrangement allows modules or other cargo to be landed onto the flight deck and then moved through the hangar to the bay. Although it is assumed the hangar will have some form of overhead gantry crane it is not clear if this crane can extend into the mission bay. If not, equipment may have to be manually handled through the hangar and into the mission bay.
The mission bay can accommodate a range of small craft such as Inshore and Offshore Raiding Craft, Sea Boats (up to 12m long) and up to ten 20ft ISO containers. In addition to boats and containers, it can also accommodate a Merlin or even two Wildcat helicopters.
The image below is from a Babcock investor presentation and shows the mission bay being used to disembark a RHIB.
Combined with the flexible accommodation provision, it opens up some very interesting opportunities.
Payload modularity gets a very bad ‘rap’ from the online defence community, driven I suspect, largely from the US Navy LCS woes, but it is a sound concept. It provides a great deal of flexibility but where it differs from other modular approaches (such as the LCS) is that the ships main sensors and weapons are fully integrated.
The Type 26 GCS project team are also leading on a couple of projects that will benefit NATO standardisation, namely module interfaces and shock protection. A mock-up of the bay has been constructed at RNAS Yeovilton to allow experimentation, especially with regard to moving loads inside and outside the bay. DSTL and the US company,Weidlinger Associates, have created a solution to ensure containers remain secured after being subject to explosive shocks, testing has been carried out at an underwater range in Scotland with very encouraging results.
The crane system is rated at 15 tonnes and can extend to the side of the ship for loading and unloading. The crane itself is based on a model used for handling containers on North Sea oil rigs, again, experimentation has determined how it can be effectively modified to accommodate a range of movement and orientation of the ship.
As can be seen from the images below, it has changed since the earlier design, the one on the right is the latest.
Marine Systems Technology and PAR Marine had been mentioned in relation to the supply of the x-y crane used in the mission bay, the same manufacturer that provides the crane for the US Navy LCS Freedom class and DDG-1000. Rolls Royce/ODIM have now signed a Design and Development Agreement for the Type 26 Mission Bay Handling System.
It looks to be an extremely versatile system.
As the Mine Countermeasures and Hydrographic Capability (MHC) Programme progresses there may also be further work with the crane system to allow it to launch and recover autonomous unmanned systems.
It will be interesting to see how this develops from the various concepts and similar examples shown above, what makes the mission bay work is not space, it is the crane. Without the crane, the mission bay is no more than an empty space. It will be different from the Pellegrini/Craneking manufactured and supplied system.
MacTaggart Scott will supply mission bay side doors.
Accommodation
Accommodation is included for 208 crew, with a core complement of 118. If the core complement is analogous to the full crew of Type 23, at 170-185, this represents a significant reduction in crewing. There are a number questions arising from this, does the 118 crew include specialists for Sonar 2097 and other dedicated ASW activities, for example, does this lower aboard crew mean more onshore, another?
The additional crew space could be used for Special Forces, beach recce parties, raiding forces, rescued civilians, UAV operators or other mission specialists.
One would expect that the ‘core complement’ will change depending upon specific deployment requirement but however used, the additional spaces make for a flexible arrangement.
One thing is certain, though, whatever the final number they will have much-improved accommodation facilities compared to the Type 23, yes, including iPod charging points! Accommodation spaces will probably be unisex and similar to those found on CVF and Type 45, as supplied by Strongbox Marine, the supplier to the Russian Navy, as it happens.
The trials results will inform future programmes.
Unmanned Warrior 2016 is a trials and demonstration event designed to offer over 40 manufacturers and research organisations an opportunity to showcase their systems in a realistic environment.
Coming soon... Unmanned Warrior
Commander Peter Pipkin, Fleet Robotics Officer, commented;
Unmanned Warrior is going to provide a showcase for the demonstration of products in a tactically relevant environment. The overall value will be in transforming the market as a whole by creating increased demand for these technologies, not seeking specific business opportunities within the event. We have deliberately adopted a different approach to capability demonstration, in that the MOD is inviting participants to offer their thoughts on what future capability might look like and where technology can be exploited without any preconception. This recognises that we (Defence) do not always have a crystal ball but are willing to look at the full breadth of possible technology exploitation paths.
None of these systems forms part of the Type 26 GCS programme but are included for completeness.
Aircraft and Stores Handling
Ship-borne aircraft handling systems are required to capture, move and restrain different types of aircraft in high sea states and adverse weather.
MacTaggart Scott pioneered helicopter recovery systems.
The deck lock system requires the pilot to hover over a steel grid in order to deploy the locking ‘harpoon’. Once engaged the hydraulic actuator system, from Claverham, pulls the helicopter onto the deck, compressing the oleo leg in conjunction with negative thrust from the rotor. This system can secure the helicopter to the deck without needing any personnel to approach it, an important safety consideration. The deck lock grid is available from a number of manufacturers and widely used.
Additional securing straps are often used and the deck lock released, it is a flexible system and because the actuator sits on the centre of rotation the helicopter can be easily manoeuvred into the most favourable position for subsequent takeoff. The pilot has immediate confirmation that the helicopter is secure and is not reliant on others
Once secured to the deck, a means of transporting to the hangar is required and these fall into two broad types, rail assist and tug. The MacTaggart Scott TRIGON system is used by many operators and makes use of computer controlled steel wire ropes to secure and move helicopters. It uses a series of cables, with the three rail PRISM system specifically on Type 23 for Merlin, this document makes a good case for the all round superiority of TRIGON.
MacTaggart Trigon helicopter recovery and handling system
Any future rotary RPAS will need to be able to launch and recover in high sea states so securing and moving in high sea states will be of great importance.
Although no details have been released specifically for Type 26 GCS aircraft securing and handling it is likely to make use of designs already in service.
For Type 26 GCS, the Air Weapons Handling System (AWHS) will be designed by Babcock
The system will store and move air weapons from their stowage locations to weapon preparation areas prior transfer onto aircraft or into torpedo launch systems. Re-stowage of unused munitions is also part of system operation and a high degree of automation will reduce manual handling.
Inside the hangar, an overhead gantry crane will likely be installed, perhaps similar to the design by Seward Wyon for the Type 45 Destroyer. Given the route from the flight deck, through the hangar and into the mission bay, this may require a bespoke design. The hangar is sized to accomodate a single Merlin helicopter, or two Wildcat’s.
Future rotary UAV’s may also be housed in the hangar.
Helicopter Landing visual aids and lighting will be supplied by AGI Limited including Homing Beacon Lighting, pilot eye line lights, visual approach lights, control systems and the Advanced Stabilised Glide Slope Indicator (ASGSI)
The flight deck safety net assemblies will likely be provided by Vonroll, as they do for other Royal Navy vessels.
Adaptable Mission Bay
The mission bay is an important part of the concept of operations for the Type 26.
Equipment modules, vehicles, boats, UAV/USV’s or stores can be carried from the beginning of a deployment or if required, flown, sailed or driven out to a nearby port, and loaded from either side.
In the first concept drawings, it was shown as housed underneath the flight deck but as the design matured, moved to a more central position, forward of the helicopter hangar and below the main weather deck.
This arrangement allows modules or other cargo to be landed onto the flight deck and then moved through the hangar to the bay. Although it is assumed the hangar will have some form of overhead gantry crane it is not clear if this crane can extend into the mission bay. If not, equipment may have to be manually handled through the hangar and into the mission bay.
The mission bay can accommodate a range of small craft such as Inshore and Offshore Raiding Craft, Sea Boats (up to 12m long) and up to ten 20ft ISO containers. In addition to boats and containers, it can also accommodate a Merlin or even two Wildcat helicopters.
The image below is from a Babcock investor presentation and shows the mission bay being used to disembark a RHIB.
Combined with the flexible accommodation provision, it opens up some very interesting opportunities.
Payload modularity gets a very bad ‘rap’ from the online defence community, driven I suspect, largely from the US Navy LCS woes, but it is a sound concept. It provides a great deal of flexibility but where it differs from other modular approaches (such as the LCS) is that the ships main sensors and weapons are fully integrated.
The Type 26 GCS project team are also leading on a couple of projects that will benefit NATO standardisation, namely module interfaces and shock protection. A mock-up of the bay has been constructed at RNAS Yeovilton to allow experimentation, especially with regard to moving loads inside and outside the bay. DSTL and the US company,Weidlinger Associates, have created a solution to ensure containers remain secured after being subject to explosive shocks, testing has been carried out at an underwater range in Scotland with very encouraging results.
The crane system is rated at 15 tonnes and can extend to the side of the ship for loading and unloading. The crane itself is based on a model used for handling containers on North Sea oil rigs, again, experimentation has determined how it can be effectively modified to accommodate a range of movement and orientation of the ship.
As can be seen from the images below, it has changed since the earlier design, the one on the right is the latest.
Marine Systems Technology and PAR Marine had been mentioned in relation to the supply of the x-y crane used in the mission bay, the same manufacturer that provides the crane for the US Navy LCS Freedom class and DDG-1000. Rolls Royce/ODIM have now signed a Design and Development Agreement for the Type 26 Mission Bay Handling System.
It looks to be an extremely versatile system.
As the Mine Countermeasures and Hydrographic Capability (MHC) Programme progresses there may also be further work with the crane system to allow it to launch and recover autonomous unmanned systems.
It will be interesting to see how this develops from the various concepts and similar examples shown above, what makes the mission bay work is not space, it is the crane. Without the crane, the mission bay is no more than an empty space. It will be different from the Pellegrini/Craneking manufactured and supplied system.
MacTaggart Scott will supply mission bay side doors.
Accommodation
Accommodation is included for 208 crew, with a core complement of 118. If the core complement is analogous to the full crew of Type 23, at 170-185, this represents a significant reduction in crewing. There are a number questions arising from this, does the 118 crew include specialists for Sonar 2097 and other dedicated ASW activities, for example, does this lower aboard crew mean more onshore, another?
The additional crew space could be used for Special Forces, beach recce parties, raiding forces, rescued civilians, UAV operators or other mission specialists.
One would expect that the ‘core complement’ will change depending upon specific deployment requirement but however used, the additional spaces make for a flexible arrangement.
One thing is certain, though, whatever the final number they will have much-improved accommodation facilities compared to the Type 23, yes, including iPod charging points! Accommodation spaces will probably be unisex and similar to those found on CVF and Type 45, as supplied by Strongbox Marine, the supplier to the Russian Navy, as it happens.