Whatever you say, but I'm sure most people can differentiate somebody saying a weakness can be countered without removing other beneficial elements...aka...adding L-Band radar as an addition to the main radar (X-Band)...which is the exact example I used....aka the Russian developed wing mounted L-Band radars...which are intrinsically an ADDITION to an existing main radar since they are wing mounted. Did that register? Probably not since this is now the 4th time I'm repeating this. Instead of getting defensive, you should admit when you are simply wrong instead of throwing out unrelated minutiae in vain attempts to divert attention from the context, something I have noticed you do very often.
I do not have to 'admit' to being wrong since you have yet to prove where I am wrong. Your argument here is that LM was 'shortsighted' in focusing on the X-band. In order for the 'shortsighted' charge to stick, you have to prove that LM did not know about the fact that wavelength employed is a factor of RCS. But since you so far have been unable to prove that, and consistently also proved unable to understand the fact that an aircraft is a compromised product of competing demands, we can conclude that you did not understand my technical explanations as to why the X-band has been the focus, is the focus, and will continue to be the focus.
The narrowband stealth of the F-35 was a bad idea due to the short-sightedness of LM. They never expected this could be exploited so easily.
This is nothing more than a great leap of faith on your own flawed assumption: Lockheed's focused on the X-band is proof of their ignorance that wavelength is part of the RCS creation.
I don't need to dispute that X-Band is the preferred region since I never claimed it was not, that was a red herring you brought up out of the blue to divert attention away from the L-Band weakness of the F-35. This is one of the achilles heels of the F-35 and among the many problems with its poor design. I haven't gotten into its other major design flaws that make it a sitting duck in any non BVR battle. Maybe that's why it tries to overcompensate with an overly powerful radar that ironically would alert opponents of its presence 200km out. I do agree that LM did all of this rotten design on purpose though. lol
That is funny considering the Russians are still struggling and the Chinese have merely dabbled in 'stealth' but here you are proclaiming the world's leader in 'stealth' is making a 'mistake'.
This is incorrect. The F-35 is supposed to be the 5th gen fighter replacement for the F-16 and some ground attack and naval fighters. The main rationale is to replace the F-16s. The F-16 is considered a front line fighter in most foreign air forces and we all know the F-22 is not going to be sold to anybody, including the British...which I already noted earlier. That means, the F-35 was meant to be THE FRONT LINE fighter of the future for American allies and customers. By the 2020s, stealth fighters will start to be sold to air forces en masse by either Russia or China, probably Russia. How is the F-35 going to measure up to that scenario given that it has inferior stealth characteristics that allow detection of the F-35 before it could detect its stealth opponents? Mind you, I said that L-Band radars would be used on fighters as well as AWACs and ground installations.
No, what I said was very correct. This is not about the F-35 as a replacement for the current generation of 'jack-of-all-trades' fighters. Of course it is intended to be. Your entire argument so far is based upon the failure to understand that any product, from ships to tanks to aircrafts, are compromised products of competing demands. Your focus on the F-35 is not based upon rational thoughts but from an emotional investment in downplaying an American product. I do not expect anyone to heap praises upon our 'stuff', but if they are going to put forth criticisms, especially when the subject is technically loaded, I expect the criticisms to contain credible technical support. I have yet to see any from you. You have presented no credible technical arguments that such a 'band-aid' solution by the Russians is of any efficacy. You do know the meaning of 'efficacy', no? And there are only speculations that the Chinese will use their version of the same 'band-aid' solution.
I'm surprised you could not figure this out. The PAK FA and J-20 are the front line air dominance fighters of their respective countries. In any battle for air dominance, the F-22s would be the primary opponents of these planes. Therefore, if air dominance could not be achieved, it either means more than a few PAK FAs and/or J-20s survived or a large number of F-22s were destroyed. In either case, the F-35s being the next front-line fighter would be forced to step in. In the case of every allied air force, they wouldn't even have the F-22 so the F-35 would be their front-line from the get-go. It's obvious.
That is not what I asked. Both the J-20 and the T-50 are still more in the proof-of-concepts and developmental stages than they are of production ready. The T-50 is less so than the J-20. But if we grant the latitude that you are correct, by the time both aircrafts are ready for production, how do you know that tomorrow they will be as capable as they are hyped today?
I never claimed anything about the J-20 or PAK FA "specifically" concerning their L-Band stealth performance.
You do not need to. Everyone understand how insinuations works: Let the readers' imagination take their course. All you have to do is point out the 'weakness' of one item without conceding that the same 'weakness' can exist in the comparables.
I mentioned the publically declared "narrowband" stealth weakness of the F-35 which Lockheed admitted.
Please...I understand that I would be treading the 'appeal to authority' style of debating, but the works of Skolnik, Knott, Jenn, Stone, and many others advocated the rule of targeting the threat frequency and not, in your vagueness, 'be stealthy against your opponent'.
Your skepticism over J-20 stealth was concerning its overall stealth RCS figure which you doubted was under ~1 meter square, a figure that I find laughable considering all of your self proclaimed expertise.
Why is it laughable? Is not doubt a reasonable part of investigation?
The J-20s dimensional size together with its general stealth shaping indicates it is stealthy from at least L-Band upwards from most angles except the aft quarter.
Then you must be a mutant endowed with a biologically based radar system. Convenient that only you have this power so far.
Obviously I can't provide exact technical details since public access to this classified project is..."classified", but you can tell from the airframe
SIZE, alignment and continuous curvature shaping of the J-20 that its lambda figures would prevent EM signal returns and mostly disappate or guide EM away from the radar source for up to decimeter size waveforms. Same reasons why the huge B-2 is stealthy at lower-radar bands despite its size. If you understood what I just said, you would know this is
MORE THAN LIKELY! Of course I fully expect you to request classified anaechoic chamber data anyways.
More convenient evasions when pressed for details. Am willing to bet that you have never heard of the 10-lambda rule or such a thing as an anechoic chamber until now.
But I have no problems educating you further, of course I do not expect you to admit your ignorance and false perceptions, your pride will not allow you to put yourself at the same level as an American, but the more objective readers will make their own judgement...
There is a difference between regularity and symmetry. The human face is symmetrical and irregular. There is only one nose, one mouth, then one ear, one cheek, basically just one item of a pair on either symmetrical side. An aircraft is the same thing: A complex body that is irregular and symmetrical.
What this mean is that...
...Irregularity equals to irregular RCS contributorship by diverse smaller complex structures on the final body. The EM interactions between these smaller radiators make modeling and estimation a supercomputer level effort. In the above illustration, the single vertical stabilator is an example of such irregular contributorships when compared against other structures on the airliner.
There is no way for any one with any degree of intellectual honesty to say that based upon visuals alone he can say that an aircraft is more or less effective in so-and-such an EM region.
Not even inverse scattering analysis...
IEEE Xplore - Inverse Scattering and Radar Cross Section of Heterogeneous Hydrometeor Ensemble
Inverse Scattering and Radar Cross Section of Heterogeneous Hydrometeor Ensemble
ABSTRACT
The models of microwave scattering on atmospheric particles are presented. Hydrometeor distribution on shape, size, material, and other parameters of scatterers are taken into account at different wave polarizations. Integration over resolution volume takes into account features of the antenna pattern. The novelty of the approach is also related with consideration of a situation when the ensemble of scatterers contains different types of hydrometeors. Results are important for remote recognition of hydrometeor types, radar and telecommunications.
...Can give the investigator that kind of information. What 'inverse scattering analysis' does is to examine the scattering fields created by a complex body to determine its shape or its material composition, but not both, and certainly not if said complex body is more effective on one wavelength than others. Inverse scatterin analysis works best on simple shapes like spheres as in hydrometeors (raindrops). Inverse scattering analysis is the EM equivalent of mechanical 'reverse engineering' attempts. Diverse freqs are used to correlate the results to see if the target's scattering fields are consistent from one freq to another but they cannot tell if an aircraft is specifically targeted against the X or L band or not.
Inverse scattering analysis is next best thing to direct measurements inside an anechoic chamber but it still put the investigator at the mercy of the complex body. In other words, if there is no cooperation by the aircraft, inverse scattering analysis can be as problematic as APA Physical Optics alone so called 'study' that everyone so eagerly jumped upon. If anechoic chamber measurement is the goal, then inverse scattering fields detection and analysis is a mile away from that goal. A mile behind that is APA's joke of a 'study'.
But here you are telling us that based upon looks alone,
YOU can tell the world that an aircraft is better at one wavelength or another within a few centimeters.
I never suggested detection would be at 100km or something along those lines. Here is a quote of what I actually said in message #432...
What I said was an example of how different -- in dB -- that two complex bodies must be when one of them effected RCS control measures. The physical wavelengths between the X and L bands are of a few cm. I want to see credible data that showed that if a complex body, under radar bombardment, is changed from X to L band, there is a 10 dB difference. Without this data, your entirement argument that the F-35 has a 'weakness' in the L-band is shot.
So, what was your point again? Speaking of the wing mounted L-Band radars, this doesn't mean it would be ineffective given the range because the sort of strategy used with this would be to "flash" the airspace after the F-35 were already detected from longer range by an L-Band AWACs datalinked with the fighters. The combined radar signatures from the ground installations, AWACs and fighters would be able to triangulate the general location of the F-35 and if a missile were launched in that direction, it could be guided with precision to the F-35 if they used either space radars or China's Beidou-II messaging to send guidance coordinates. If a missile were guided to within a few thousand feet of the F-35, pretty straight forward given the above scenario, it is unlikely the F-35 could break the lock before getting shot down.
Ah...A different tack. Now you are stacking the deck against the F-35 by giving its opposition all sorts of supporting elements. Funny how the F-35 is denied the same privilege. But hey...We know by now this subject is filled with intellectual dishonesty.
I never suggested using these ultra-low frequencies, this is another red herring you're pulling suggesting unusable radar frequencies for the purposes we're talking about. These frequencies are tactically useless against fighter sized objects given their extremely poor resolution.
That was not what I asked. If an increase of a few cm is supposed to be a 'stealth killer', then certainly an increase to one meter wavelength is no longer speculative but assured, no? So what if they have poor target resolutions? As long as the 'stealth' aircraft is at least revealed in the general direction, why not use these meters length wavelengths?
You can Google explanations of these radar frequencies to help you better understand.
I think people here know I am versed enough about this subject.
First of all, ground stations are not forced to have larger antenna and longer wavelengths simply because they are on the ground. LOL
The laugh is on you. Ground air defense radars are usually meters in dimensions, not because of the freqs but because of the wavelength versus antenna shape versus antenna dimensions
IF they want to reach out as far as possible. So by the need for distance, yes, ground stations are quite forced by this need.
Obviously, a stealth detecting ground radar installation along the lines of what I described for the reason I described would be L-Band based and would work in conjuction with AWACs and fighters...and space based guidance as I described. In the case of the ground based L-Band radar, the range would be limited. I'm assuming you are imagining something like an OTH (Over-The-Horizon) radar because otherwise what you just said makes no sense in the context of what I said unless you want to find a distant aircraft carrier at sea or something HUGE where you don't care about "usable" accuracy. L-Band cannot be used as a singular tracking solution, but in combination with other L-Band radars, it can triangulate location with enough resolution to provide a firing solution. Given this scenario, once a missile gets within a few miles of the target, the missile itself can rely on its own targeting to do the rest.
But ground radars are
ALREADY operating in wavelengths longer than the L-band. Why are they not touted as 'stealth killers' now? Air traffic control radars operate in the S-band, which is next to the L-band, and yet US 'stealth' aircrafts must fly with enhancers to assist civilian controllers. I would think that if the L-band is so effective, the Internet would be filled with civilian controllers, US and Europeans, chattering away at how they were able to detect US 'stealth' aircrafts.
If the Russians wanted, they could use those meters length HF/UHF/VHF bands but the beam quality would be so poor that it would be worthless due to a characteristic called 'resolution cell'...
Definition: radar resolution cell
The volume of space that is occupied by a radar pulse and that is determined by the pulse duration and the horizontal and vertical beamwidths of the transmitting radar. Note: The radar cannot distinguish between two separate objects that lie within the same resolution cell.
You are making the same mistake as everyone did when they so eagerly latched on that APA 'analysis' about the L-band. The reason why the L-band was used by the Russians is not because they have any credible data to back up their claim, but because the L-band was the best compromise they can come up with given the wavelength versus antenna shape versus antenna size demands. For the antenna, those demands came from the best locations the Russians can think of: Wing leading edges.
Whatever you say. Anyways, the words I used is "Passive Radar Detection", I didn't say there is a radar type called "Passive Radar"....there is an obvious difference. lol Look up RWR (Radar Warning Receiver), it is used for ....Passive Radar Detection and is claimed to be one of the primary strengths of the F-22. That's your style of semantics at play, once again. Besides wordplay, if a fighter always maneuvers outside the statistically effective reach of the seeking radar then by your logic, all the opponent has to do to win airspace is occupy that airspace while blasting their radar. Hey, air dominance by default! Like I said earlier, tactical thinking is not your forte. I'm sure there are situations where dogfights would occur, unless we accept your sort of logic and believe the LM propaganda that the F-35 can successfully engage everything from distant BVR ranges, even in the soon-to-be age of widespread stealth.
And you are telling me that tactical thinking is not my forte?
With the speed and accuracy of today's air-air missiles, especially the radar guided type, an F-35 would down several enemy fighters blasting away with their radars in trying to think like you. That is the weakness of 'non-stealth' fighters trying to go up against 'stealth' fighters. They have to use their radars to attempt to acquire a target they know is extremely difficult to locate. In doing so they give themselves away. But if they do not transmit, they run a very high risk of letting the F-35 get by.
Soon-to-be widespread use of 'stealth'? Try another 20 yrs or so. And you can be confident that we are well on the way on how to deal with 'stealth', if not already.
Whatever you say. I am invested in gold and silver though. Something that is intricately related to the future direction of the American economy and its military hegemony, arguably to a greater extent than any weapons platform.
No wars have ever been won by financial speculators.