ASELSAN: Torpedo Countermeasure Technology Centre
In line with its corporate mission, ASELSAN has, as in other fields of defence, undertaken an important role in establishing the necessary infrastructure and technology, as well as acquiring critical knowledge in the field of underwater defence. ASELSAN first started its studies on the development of underwater acoustic systems in 2006, and has made important technological achievements in a very short time, particularly in the field of torpedo countermeasure systems.
As a result of these studies, the ZARGANA Submarine Torpedo Countermeasure System has been developed indigenously and included into the inventory of the Turkish Naval Forces Command (TNFC). Meanwhile, using its own resources, ASELSAN has also developed the HIZIR Torpedo Countermeasure System for surface ships. The Torpedo Detection Array (Towed Sonar) used in the HIZIR system, which is vital for defence operations against torpedoes and enables the long range detection of torpedoes, has been designed and manufactured using indigenous capabilities.
As a result of said capabilities, expandable effectors – the most critical components of the ZARGANA and HIZIR systems – have been developed indigenously. These effectors, called ZOKA family, are available in two different types: decoy and jammer. An extensive range of ZOKA effectors have been created that mainly differ according to the type of platform on which they are used. ZOKA effectors are equipped with advanced acoustic jamming and decoy algorithms, so that they can be effective against all torpedoes with acoustic guidance.
Conversely, rather than expandable effectors using soft-kill methods, hard-kill methods are needed against torpedoes without acoustic guidance. That is why ASELSAN, in addition to their already existing soft-kill capability, has been working extensively to provide the HIZIR and ZARGANA systems with hard-kill capability. The aim of the project, which was launched in 2014 with the support of the TÜBİTAK TEYDEB (The Scientific and Technological Research Council of Turkey, Technology and Innovation Grant Programs), was to develop a Defence Torpedo Against Torpedoes (TORK) in order to eliminate torpedoes physically. With the integration of the TORK to HIZIR and ZARGANA in the near future, surface ships and submarines are to acquire top-level countermeasure capability against torpedoes.
ZARGANA
ZARGANA is a soft-kill countermeasure system which, by using the data collected from the platform’s undersea systems, designates and implements the tactic that offers the highest probability of success against the relevant underwater threat. The system’s torpedo countermeasure tactics include evasive manoeuvre advice for the submarine and the launch pattern and timing of acoustic decoys/jammers. The system can operate in integration with operator-controlled input data or underwater systems that automatically provide real time data, and consists of the following components:
- Tactic Development Simulator (Ground Based)
- Decision Support System
- Launcher (Port/Starboard)
- Expandable Effectors (Acoustic Jammer/Acoustic Decoy)
Thanks to their modular design, expandable effectors – the most critical components of the ZARGANA system – can be manufactured in different types depending on requirements, and be adapted to various different sizes. On one hand, acoustic jammers can operate in active, passive or combined active and passive modes, and generate wide band high-level noise to cover the operating frequencies of classical and modern acoustic-guided torpedoes. Acoustic decoys, on the other hand, misguide the torpedo by simulating with high fidelity the acoustic and dynamic characteristics of the platform.
Figure 3. ZARGANA Launcher Sub-System
ZARGANA system is in use in the inventories of TNFC. Owing to its flexible design and modular structure, enabling its easy adaptation according to need, the system can be integrated to different submarine platforms.
HIZIR
Indigenously developed by ASELSAN for corvettes and higher-class ships, HIZIR is a soft-kill countermeasure system equipped with the most up-to-date technology. The HIZIR system consists of the following sub-systems:
- Torpedo Detection Array (Towed Sonar)
- Towed Acoustic Decoy
- Expandable Acoustic Decoy
- Towing winch
- Electronic Cabinet
- Launcher (Port/Starboard)
- Operator Display and Control Units (COC, Combat Operations Centre/Bridge)
(Figure 4) The HIZIR system can operate in integration with ships’ sonars, command control systems and data distribution units.
An important feature of the system is a triple hydrophonic structure with advance detection, classification and positioning algorithms that immediately detect the direction of incoming torpedoes threats, without requiring the ship to manoeuvre. Owing to this feature, the HIZIR system can detect torpedoes over long distances, providing the ship with sufficient reaction time. Once a torpedo is detected, the system promptly recommends to the operator the most appropriate tactic for evading the torpedo threat. These tactics include the evasive manoeuvre of the ship, the planning for a towed decoy operation, towed decoy parameters, and the launch timing of expandable decoys.
Figure 4. HIZIR system
The HIZIR system – which received an Innovative Product award at the TESİD (Turkish Electronic Industrialists Association) Innovation & Creativity Awards in the large companies category for its indigenous design and superior technological features – has a modular structure that can be updated or adapted according to new threats that may arise in the future.
TESİD award for HIZIR system
ZOKA
ZOKA effectors, which have been developed for submarines and surface ships, are capable of operating effectively against any torpedo threat in the world that has acoustic guidance, and can be used in active, passive or combined mode. ZOKA effectors are used in HIZIR and ZARGANA Torpedo Counter Systems in two different types: jammer (Figure 5) and decoy (Figure 6). ZOKA jammers emit wide band high-level noise to cover the acoustic operating frequency range of all existing torpedoes. By doing so, they mask the noise of submarines against passive torpedoes, and reduce the detection range of eco signals reflecting from the submarine by increasing the noise of environment against active torpedoes. Conversely, ZOKA decoys deceive and confuse the torpedo by simulating the acoustic and dynamic characteristics of the platform and attracting the torpedo to themselves. The combined use of ZOKA decoys and jammers has been highly effective against acoustic torpedoes.
Figure 5. ZOKA mobile jammer
Figure 6. ZOKA mobile decoy
Hard-Kill System: TORK
The most efficient defence for submarines and surface ships against a possible torpedo threat is the combined use of soft-kill and hard-kill methods. Work on the Anti-Torpedo Against Torpedoes (TORK) was initiated by ASELSAN in 2014 with the support of TÜBİTAK TEYDEB program. The system, which was developed by ASELSAN to provide hard-kill defence capability against torpedoes, consists of indigenous hardware and software components. TORK is an anti-torpedo torpedo being developed for eliminating acoustic-guided, wire-guided, unguided and wake-homing torpedoes aimed at surface ships. With its sonar head, TORK is capable of accurately locating a torpedo threat as it approaches the platform. Currently under development, this system uses advanced prevention algorithms to detonate to render any torpedo threat in its range unserviceable.
The TORK is currently undergoing manoeuvre trials in a sea environment, while performance tests with its acoustic sonar head are expected to take place in early 2017.
Figure 7. TORK: The ASELSAN Hard-Kill Countermeasure Torpedo
TORK will ensure that high value and strategically important assets, such as submarines and surface ships can navigate much more safely at sea. TORK, which is planned to be effective against all types of torpedoes, is being developed so that it can operate integrated with soft-kill countermeasure systems.
The Road from TORK to the Light Torpedo
Torpedoes are divided into two groups, as heavy-weight and light-weight. While heavy-weight torpedoes are approximately 53 cm in diameter and about 6 meters long, a light-weight torpedo has a diameter of approximately 32 cm and a length of 3 meters. Heavy torpedoes are launched from submarines against submarines and surface platforms, and can be controlled from the launching submarine with a cable. Heavy torpedoes can operate for up to 60 minutes. Light torpedoes, however, are launched from aerial units or surface platforms against submarines and cannot be controlled by cable. Their duration of operation range is likely between 10 to 20 minutes.
The operating principles, size and sub-components of the TORK system are largely similar to that of a light torpedo. Thus, by taking into consideration both the domestic and international market needs that may arise in the near future, ASELSAN has also been developing the TORK system to create a basis for light torpedoes. The warhead, battery compartment, and acoustic sonar sensor array (wet-end) have been developed with a modular design, so that they can be adapted for use on light torpedoes. For example, the electronic sub-system (dry-end) that is developed for the TORK acoustic sonar can also be used in the light torpedo acoustic sonar sensor array (Figure 8).
Figure 8. TORK (on the left) and Light Torpedo (on the right) Sonar Sensor Arrays
Other important sub-systems of the TORK, such as the engine, propulsion-direction, guidance and control, have been developed to be used in light torpedoes without need for modifications. The best example of this is the Motor Driver Unit developed for the TORK (Figure 9). Currently, the Motor Driver Unit adequately meets the needs of TORK and is capable of driving two engines simultaneously at the power levels required by a light torpedo.
Figure 9. Motor Driver Unit developed for joint use by Light Torpedo and TORK
Having largely completed the infrastructure of the indigenous light torpedo with its current work on the TORK, ASELSAN has gained significant infrastructure and technological knowledge in the field of torpedo technologies. Building on what it has gained in this field, ASELSAN is walking with firm steps towards its goal of becoming a technology centre for light torpedoes in the short term, and for supercavitating torpedoes in the long term.
Future Outlook
As in all areas of defence systems, the concepts of ‘threat’ and ‘countermeasure’ evolve continuously in close relationship with one another. In parallel with new advances in technologies, torpedo manufacturers have been constantly updating or renewing their torpedoes to make their torpedoes faster, more silent, and smarter when moving. Similarly, countermeasure systems are also continually developing against threats, so as to maximise the defence capability they offer. In this competition between threat and countermeasure, new methods are also being developed to allow submarines and surface ships to better evade torpedo threats.
Considering the development and technological advances of torpedoes, it is expected that the need for countermeasures will increase even further both in Turkey and around the world. With the prospects of supercavitating torpedoes becoming even more significant threats with the acquisition of acoustic capabilities, the significance of countermeasure systems is expected to peak in the forthcoming period.
With its growing experience in torpedo and torpedo countermeasure systems, ASELSAN is continuing its work on the advanced technologies of the future. The ‘development of new generation smart effectors’ project regarding torpedo countermeasure systems stands as the best example of this. This technology development project, which aims to enable communication between underwater units through an automatically established acoustic network, was initiated in 2015 with the support of the TÜBİTAK TEYDEB program. The technology that will be gained from the project, which scheduled for completion in 2017, will in the near future be used not only in new generation torpedo countermeasure effectors, but also in other fields of underwater acoustics.
Building on its 40 years of experience in technology, ASELSAN will continue to contribute to the development of all the underwater acoustic system technologies required by Turkey. It will continue to provide the most advanced technology for national defence in the field of torpedo and torpedo countermeasure systems, through the use of modular systems compliant with the relevant performance, functionality and logistic requirements. These systems will soon earn their rightful place in the world market.
http://www.milscint.com/en/turkeys-technology-centre-of-torpedo-countermeasure-systems-aselsan/