ohmrlobalobayeh
SENIOR MEMBER
- Joined
- Mar 24, 2012
- Messages
- 3,388
- Reaction score
- -23
- Country
- Location
lets see if PAF wants an AESA radar or prefers a PESA.
im pretty sure Pakistan goverment would 'eat grass'(if it has to be done) just to get AESA for the jF-17s
A passive electronically scanned array (PESA), also known as passive phased array, is a phased array radar which has a single central radio frequency source (such as a magnetron, a klystron or a travelling wave tube), sending energy into the multiple phase shift modules, which then send energy into the individual emitting elements in the front of the antenna. This contrasts with active electronically scanned array (AESA) devices, which have a separate radio frequency source for each phase shifter/emitting element. A PESA radar is therefore simpler to construct than an AESA.
https://en.wikipedia.org/wiki/Active_electronically_scanned_array#Advantages
Low probability of intercept[edit]
See also: low probability of intercept radar
Radar systems work by sending out a signal and then listening for its echo off distant objects. Each of these paths, to and from the target, is subject to the inverse square law of propagation in both the transmitted signal and the signal reflected back. That means that a radar's received energy drops with the fourth power of the distance, which is why radar systems require high powers, often in the megawatt range, to be effective at long range.
The radar signal being sent out is a simple radio signal, and can be received with a simple radio receiver. It is common to use such a receiver in the targets, normally aircraft, to detect radar broadcasts. Unlike the radar unit, which must send the pulse out and then receive its reflection, the target's receiver does not need the reflection and thus the signal drops off only as the square of distance. This means that the receiver is always at an advantage [neglecting disparity in antenna size] over the radar in terms of range - it will always be able to detect the signal long before the radar can see the target's echo. Since the position of the radar is extremely useful information in an attack on that platform, this means that radars generally must be turned off for lengthy periods if they are subject to attack; this is common on ships, for instance.
Turning that received signal into a useful display is the purpose of the "radar warning receiver" (RWR). Unlike the radar, which knows which direction it is sending its signal, the receiver simply gets a pulse of energy and has to interpret it. Since the radio spectrum is filled with noise, the receiver's signal is integrated over a short period of time, making periodic sources like a radar add up and stand out over the random background. The rough direction can be calculated using a rotating antenna, or similar passive array using phase or amplitude comparison. Typically RWRs store the detected pulses for a short period of time, and compare their broadcast frequency and pulse repetition frequency against a database of known radars. The direction to the source is normally combined with symbology indicating the likely purpose of the radar – Airborne early warning and control, surface-to-air missile, etc.
This technique is much less useful against a radar with a frequency-agile (solid state) transmitter. Since the AESA (or PESA) can change its frequency with every pulse (except when using doppler filtering), and generally does so using a random sequence, integrating over time does not help pull the signal out of the background noise. Moreover, a radar may be designed to extend the duration of the pulse and lower its peak power. An AESA or modern PESA will often have the capability to alter these parameters during operation. This makes no difference to the total energy reflected by the target but makes the detection of the pulse by an RWR system less likely.[9] Nor does the AESA have any sort of fixed pulse repetition frequency, which can also be varied and thus hide any periodic brightening across the entire spectrum. Older generation RWRs are essentially useless against AESA radars, which is why AESA's are also known as 'low probability of intercept radars. Modern RWRs must be made highly sensitive (small angles and bandwidths for individual antennas, low transmission loss and noise)[9] and add successive pulses through time-frequency processing to achieve useful detection rates.[10]
High jamming resistance[edit]
Main article: radar jamming and deception
Jamming is likewise much more difficult against an AESA. Traditionally, jammers have operated by determining the operating frequency of the radar and then broadcasting a signal on it to confuse the receiver as to which is the "real" pulse and which is the jammer's. This technique works as long as the radar system cannot easily change its operating frequency. When the transmitters were based on klystron tubes this was generally true, and radars, especially airborne ones, had only a few frequencies to choose among. A jammer could listen to those possible frequencies and select the one to be used to jam.
Most radars using modern electronics are capable of changing their operating frequency with every pulse. An AESA has the additional capability of spreading its frequencies across a wide band even in a single pulse, a technique known as a "chirp". This can make jamming less effective; although it is possible to send out broadband white noise against all the possible frequencies, this reduces the amount of jammer energy in any one frequency. In fact, AESAs can then be switched to a receive-only mode, and use these powerful jamming signals instead to track its source, something that required a separate receiver in older platforms. By integrating received signals from the targets' own radar along with a lower rate of data from its own broadcasts, a detection system with a precise RWR like an AESA can generate more data with less energy. Some receive beamforming-capable systems, usually ground-based, may even discard a transmitter entirely.
However, using a single receiving antenna only gives a direction. Obtaining a range and a target vector requires at least two physically separate passive devices for triangulation to provide instantaneous determinations, unless phase interferometry is used. Target motion analysis can estimate these quantities by incorporating many directional measurements over time, along with knowledge of the position of the receiver and constraints on the possible motion of the target.
Other advantages[edit]
Since each element in an AESA is a powerful radio receiver, active arrays have many roles besides traditional radar. One use is to dedicate several of the elements to reception of common radar signals, eliminating the need for a separate radar warning receiver. The same basic concept can be used to provide traditional radio support, and with some elements also broadcasting, form a very high bandwidth data link. The F-35 uses this mechanism to send sensor data between aircraft in order to provide a synthetic picture of higher resolution and range than any one radar could generate. In 2007, tests by Northrop Grumman, Lockheed Martin, and L-3 Communications enabled the AESA system of a Raptor to act like a WiFi access point, able to transmit data at 548 megabits per second and receive at gigabit speed; this is far faster than the Link 16system used by US and allied aircraft, which transfers data at just over 1 Mbit/s.[11] To achieve these high data rates requires a highly directional antenna which AESA provides but which precludes reception by other units not within the antennas beamwidth, whereas like most Wi-Fi designs, Link-16 transmits its signal omni-directionally to ensure all units within range can receive the data.
AESAs are also much more reliable than either a PESA or older designs. Since each module operates independently of the others, single failures have little effect on the operation of the system as a whole. Additionally, the modules individually operate at low powers, perhaps 40 to 60 watts, so the need for a large high-voltage power supply is eliminated.
Replacing a mechanically scanned array with a fixed AESA mount (such as on the Boeing F/A-18E/F Super Hornet) can help reduce an aircraft's overall radar cross-section (RCS), but some designs (such as the Eurofighter Typhoon) forgo this advantage in order to combine mechanical scanning with electronic scanning and provide a wider angle of total coverage.[12] This high off-nose pointing allows the AESA equipped fighter to employ Crossing the T against a mechanically scanned radar that would filter out the low closing speed of the perpendicular flight as ground clutter while the AESA swivels 40 degrees towards the target in order to keep it within the AESA's 60 degree off-angle limit.[13]