What's new

China space station

@Deino, where's the English Translation? You have the obligation to translate them! Just like what you asked to other Chinese Posters in here when they put Chinese Article here. :D

Thanks for your kind reminder ! And I promise to better take care.

You know there is something called double standard. :enjoy:

Or simply having made a mistake is also an explanation.
 
Back to topic...

The assembly of the core module "Tianhe" (天和) of the future Chinese space station, we see the directional antenna for communication Sat-Sat, robotic arm crawling 7 degrees of freedom, the port for mooring with vessel cargo ... etc.


The connectivity module of the future Chinese space station


EDIT: translation added due to @Brainsucker 's reminder & request :tup:

What is the communication Sat-Sat? Communication Satellite - Satellite?
 
Thanks to TaihuLight, which has made it much easier.

View attachment 450454

LMAO. Lost control theory prevails in Italy. Good to them. CNSA guys maybe sit tight and want to watch the drama is now showing on Italy media. Oh wait, I think they even have no time to see stupid question as same as most of us. :D

It seems that these guys are eager to see Tiangong-1 to crash in Italy's land and ESA guys are learning Madarin and apply to on board future Tiangong space station.. It's quite weird. Maybe the Italian guy think their super computer is better than TaihuLight. Am I wrong? LMAO:D

As to us, CNSA is the most trusted agency in China. I just can't help laughing when I saw the BS with the sarcastic tone. TBF, it's quite stupid to me.

Technically, they pay much more attention to the crash issue and have no idea about the mission task and progress made by Tiangong-1. Well, it's good to people there and just keep it and go on. lol. As the saying goes, you can you up, no can no BB. :lol::lol:

Interesting.:D

@Beast Long time no see. You should firing up for the thread is almostly ruined. :sniper:

You know there is something called double standard. :enjoy:
It let me remember the Gallileo projects. European guys of the projects are hypocrites for sure and turned out to be loser in finnal. That's an very interesting story.
 
China has been kept updating orbit elements of Tiangong-1 since a year ago and which is now expected to reenter tomorrow.

http://www.cmse.gov.cn/col/col810/index.html

天宫一号目标飞行器轨道状态公告(4月1日)
发布日期:2018-04-01

据中国载人航天工程办公室发布,2018年4月1日8时,天宫一号运行在平均高度约167.6公里的轨道上(近地点高度约161.0公里、远地点高度约174.3公里、倾角约42.70度),预计北京时间2018年4月2日再入大气层。

http://www.cmse.gov.cn/art/2018/4/1/art_810_32413.html
 
Do they already know where the chiese space station will crashland in march?

Italy is in the yellow area. 8-)
04xp-junk1-master1050.png
 
Is China's space laser for real?
It's not a Death Star super laser. It's a space broom.

By Jeffrey Lin and P.W. Singer Yesterday at 11:50pm

depositphotos_4958998_l-2015.jpg

It's not this.
China's space broom isn't the Death Star super laser. It's an orbiting satellite with a laser only powerful enough to heat up pieces of space junk, so that they change course burn up in the atmosphere.
Depositphotos

In a recent article in scientific journal Optik, a faculty member at China's Air Force Engineering University proposed building a laser-armed satellite, a "broom" to do battle with the pernicious problem of space debris.

Laser-armed satellites, naturally, generate a lot of attention, and so the proposal of Quan Wen and his co-authors has made its way into several splashy headlines. But it's more than hype. The concept addresses a real (and growing) problem: there's something like 17,852 artificial objects orbiting earth (PDF), and an estimated 300,000-plus pieces of space debris larger than a marble. At the fast orbital velocities up in space, even large craft like the International Space Station have to maneuver out of the way of small objects to avoid catastrophic damage.

Quan's research looks at the efficacy of a hypothetical laser operating near the infrared spectrum. It would blast away targeted space debris for a couple minutes, at a rate of twenty bursts of laserfire a second. That amount of energy would be sufficient to vaporize part of the object's mass. Contrary to public imagination, space laser brooms like the one proposed don't actually vaporize space debris, but rather "burn off" a chunk. This would create sufficient kinetic force from the chemical combustion to change the object's orbit. With that change in direction, the debris will quickly reenter the atmosphere and burn up. Because of atmospheric distortion, it's much more effective to zap space debris with a satellite than, say, a ground-based laser.

Of course, for now it's all theory. The laser broom would need to be actually mounted on a satellite and lofted into orbit to test its true efficacy. And even then, it'd still face some legal grey areas (technically speaking, space debris are still the property of owners of the satellites they originated from, which is very, very difficult to track) as well as major suspicion about the idea of implementing a weapon-like technology up in space.

Like many others, China's space program has both civilian and military applications. (The AoLong 1 satellite, for example, has a robotic arm for mechanically de-orbiting space debris that has has potential as an anti-satellite sabotage technology.) And so there's an obvious question: can the space laser broom be an anti-satellite weapon? It's certainly possible, though a cost-effective laser broom would need to be small—just big enough to take care of small debris. To quickly deal serious damage to enemy spacecraft, one would need a much larger space laser weapon; perhaps an orbital battlemoon?

Popular Science

Peter Warren Singer is a strategist and senior fellow at the New America Foundation. He has been named by Defense News as one of the 100 most influential people in defense issues. He was also dubbed an official "Mad Scientist" for the U.S. Army's Training and Doctrine Command. Jeffrey is a national security professional in the greater D.C. area.




Tiangong-1's April 2018 Reentry V1.8 Part1

First posted 10 March 2018; Updated 2 April 2018

Table of Contents

1. Introduction
2. Background
3. The "12 March 2018" laser strikes event
4. Post-"12 March 2018" event's analysis
5. Official Chinese statement after the "12 March 2018" event
6. The geomagnetic storm of 19 March 2018
7. Tiangong-1's final week
8. Tiangong-1's final day
9. The coup de grâce
10.Post-reentry analysis


1. Introduction

Has There Been a Loss of Control?

Where will Tiangong-1 reenter?

How Difficult is it to Accurately Predict a Reentry?

Will objects from this reentry hit me or my property?
:rolleyes:

As all these questions can only expose how biased and ill-intentioned the Western propaganda machine is, hell-bent in smearing the ever more outstanding Chinese space achievements (due to desperation and jealousy as always), let us reassure all our Pakistani readers and other foes as well, with some clarifications.

China has been working on developing laser weapons since the 1960s, and the People’s Liberation Army in 2015 published the book Light War that gives a central role to fighting a future war using lasers.

As already disclosed by the media, China is known to have operated at least 3 ASAT laser stations, in Anhui, Sichuan and Xinjiang.

In 2005, Chinese researchers have successfully conducted a satellite-blinding experiment using a 50-100 kilowatt capacity mounted laser gun in Xinjiang province. The target was a low orbit satellite with a tilt distance of 600 kilometers. The diameter of the telescope firing the laser beam is 0.6 meters wide. The accuracy of acquisition, tracking and pointing is less than 5 microradians.

Three researchers, Gao Minghui, Zeng Yuquang and Wang Zhihong disclosed plan for even more powerful ASAT lasers in The Chinese Optics journal in December 2013.

All worked for the Changchun Institute for Optics, Fine Mechanics and Physics – the leading center for laser weapons technology.

The plan proposed the building of a 5-ton chemical laser as a combat platform capable of destroying satellites in orbit. Given funding by the Chinese military, which is in charge of China’s space program, the anti-satellite laser could be deployed by 2023.


In another study that was led by Quan Wen, a researcher from the Information and Navigation College at China's Air Force Engineering University, with the help of the Institute of China Electronic Equipment System Engineering Company, laser used in removal of space debris have been investigated.
The simulation results show that, debris removal is affected by inclination and RAAN, and laser station with the same inclination and RAAN as debris has the highest removal efficiency. It provides necessary theoretical basis for the deployment of space-based laser station and the further application of space debris removal by using space-based laser.

Although high secrecy is strictly enforced, one could compare the case of Tiangong-1 space laboratory with the ill-fated Phobos-Grunt Mars probe, that reentered over the South Eastern Pacific Ocean on 15 January 2011.

There was no random reentry over highly populated area. This time Tiangong-1 will also reenter over the Pacific Ocean, in a remotely controlled mode.

This suggests that China will secretly use its laser ASAT stations, to produce a series of thrusts generated by heating until vaporizing the outer part of the spacecraft, thus lowering the perigee of Tiangong-1. Notice Tiangong-1 passes every day up to five times over China, heading south-Eastward toward the south Pacific.

Upon reaching the ultimate ~140 km altitude threshold, where a complete orbit is no longer possible, the coup de grâce will be given by piercing the forward part of the pressurized module, thus allowing all the remaining gaz to escape at high velocity, and generating an additional negative vector thrust (think of a coca cola bottle).
Alternately, by piercing the propellant tank (i.e. Hydrazine) would even provide a more powerfull thrust, but the targeting requires a higher accuracy.

If this procedure succeedes, this would eventually allow a safe reentry half an orbit later over the predesignated area over the Pacific Ocean.

What makes the preparation for this highly risky space billiard operation possible is that China can count on its world fastest supercomputers.
As reported by the state television CCTV13, it it took 20 days, instead of the otherwise 12 months, for China's Sunway-TaihuLight, the world's fastest supercomputer, for simulating the numerical reentry prediction, which are in accordance with wind tunnel simulations.


This is the least China could do, as even North Korea has already disclosed its own Korean-style Anti-Meteor Laser System, needed to protect its planned future Lunar base, back in a New Year 2018 show!

:enjoy:

004032uiccctwukggkrdd3-png.462677

▲ Chinese official statement of 8 January 2018: Tiangong-1 not to reenter uncontrolled.

pointnemoisa-jpg.462678

https://defence.pk/pdf/attachments/...8/?temp_hash=d8770e7e953583e1e611f08e3ef7f07a
https://3c1703fe8d.site.internapcdn.net/newman/csz/news/800/2018/pointnemoisa.jpg

Officially called an "ocean point of inaccessibility," this watery graveyard for titanium fuel tanks and other high-tech space debris is better known to space junkies as Point Nemo, in honour of Jules Verne's fictional submarine captain.

Point Nemo is further from land than any other dot on the globe: 2,688 kilometres (about 1,450 miles) from the Pitcairn Islands to the north, one of the Easter Islands to the northwest, and Maher Island—part of Antarctica—to the South.

"Its most attractive feature for controlled re-entries is that nobody is living there," said Stijn Lemmens, a space debris expert at the European Space Agency in Darmstadt, Germany.

"Coincidentally, it is also biologically not very diverse. So it gets used as a dumping ground—'space graveyard' would be a more polite term—mainly for cargo spacecraft," he told AFP.

Some 250 to 300 spacecraft—which have mostly burned up as they carved a path through Earth's atmosphere—have been laid to rest there, he said.

By far the largest object descending from the heavens to splash down at Point Nemo, in 2001, was Russia's MIR space lab, which weighed 120 tonnes.

"It is routinely used nowadays by the (Russian) Progress capsules, which go back-and-forth to the International Space Station (ISS)," said Lemmens.

The massive, 420-tonne ISS also has a rendezvous with destiny at Point Nemo, in 2024.

In future, most spacecraft will be "designed for demise" with materials that melt at lower temperatures, making them far less likely to survive re-entry and hit Earth's surface.

Both NASA and the ESA, for example, are switching from titanium to alumium in the manufacture of fuel tanks.

China hoisted Tiangong-1, it's first manned space lab, into space in 2011. It was slated for a controlled re-entry but ground engineers lost control in March 2016 of the eight-tonne craft in March 2016, which is when it began its descent toward a fiery end.

The chances of anyone getting hit by debris from Tiangong-1 are vanishingly small, less than one in 12 trillion, according to the ESA.

"Nemo," by the way, means "no one" in Latin.

https://phys.org/news/2018-03-nemo-...e=menu&utm_medium=link&utm_campaign=item-menu
▲ Official designated reentry area for Tiangong-1: 'Point Nemo' is a watery graveyard for titanium fuel tanks and other high-tech space debris

aerospace-tiangong-1-reentry-jpg.458630

▲ Map of Tiangong-1 ground track

reentry_map_2012_01_15_cb_1-jpg.458631

▲ An official map of the Phobos-Grunt reentry released by Roskosmos by 20:00 Moscow Time on Jan. 15, 2012.
Notice the similarity with Tiangong-1 regarding the relative location of the impact zone and the ASAT laser stations!


w020130723291509035315-jpg.458632

▲ Space imagery of Tianshan ASAT laser station. 中国天山部署战略反卫星激光武器

1467809618648020-jpg.461376

▲ China's Sunway-TaihuLight, the world's fastest supercomputer, used for simulating the numerical reentry prediction of Tiangong-1.

1471423133118440-jpg.461375

 
Last edited by a moderator:
Tiangong-1's April 2018 Reentry V1.8 Part2

3. The "12 March 2018" laser strikes event

Confirming earlier assessment, the Chinese PLA ASAT laser stations seem to have already proceeded with their first in a series of corrective laser surgical pinpoint accuracy strikes, as shown in the sudden increased decay rate of Tiangong-1 correlated by the official TLE of March 12!

tia1-2018-03-17_rder-png.460533

▲ It is clearly visible an anomalous burst from the TLE 18070.1268 (March 11) to 18072.1107 (March 13), 6 consecutive TLEs.

tia1-2018-03-18_mc-png.460534

▲ After the big variation in the decay rate on March 12, the totally controlled reentry is predicted at a slightly earlier date: 2-3 April 2018

screenshot-2018-3-20-satellite-tracker-3d-png.460600

▲ Groundtrack of a very good pass of Tiangong-1 over China's laser stations on 12 March 2018, especially a frontal approach over Tianshan ASAT station!

dyqmbjvumae1khu-jpg.460992

▲ Attitude and Inclination of Tiangong-1, as of 14 March 2018: totally controlled reentry is predicted for 2-3 April 2018

Coincidence? I think not!

200w_d-gif.459351





______________________________________


4. Post-"12 March 2018" event's analysis

Latest post-"12 March 2018" astrophotographies of China's orbital space laboratory Tiangong-1

Notice the regular and constant brightness of the path, indicating a stable attitude with no tumbling after the first laser strikes!

dykeypdvoailcka-jpg.459161

https://defence.pk/pdf/attachments/...1/?temp_hash=e4d24499e00af15d7774fb0ec52e7788
https://pbs.twimg.com/media/DYKeyPDVoAIlcka.jpg
https://twitter.com/makkisse999/status/973515308710313984
#天宮1号 (TIANGONG 1)の通過を撮影。予報1.3等級、北西から東へ。最高通過点高度29°(方位28°)。3/13, 19:06~18:08 頃、太陽高度-10°。明るい&雲多い,と状況悪かったが、ちらっと見えました。。 露出10秒x6枚 比較明合成, 対角魚眼 トリミング
▲ TIANGONG 1 pass captured from Tanegashima on 13 March 2018, 19:06~18:08 JST, 10 seconds x 6, fisheye, APS-C10 mm, PENTAX K-5II s
Estimated Magnitude: 1.3


dypwemcvmaarzn2-jpg-large-jpg.460994

https://defence.pk/pdf/attachments/...4/?temp_hash=830ea009297af6bd801354cea69d77ff
https://pbs.twimg.com/media/DYPwEMcVMAArZN2.jpg
https://twitter.com/makkisse999/status/973886180964974593
#天宮1号 (TIANGONG 1)の通過を撮影。予報0.5等級、北西から東へ。最高通過点高度48°(方位31°)。18:54~18:56 頃、太陽高度-7~-8°。昨日よりも更に明るいが雲は無かった。目視出来たような・・・。画像調整強。 露出5秒x21枚 比較明合成, 対角魚眼 トリミング
▲ TIANGONG 1 pass captured from Tanegashima on 14 March 2018, 18:54~18:56 JST, 5 seconds x 21, f/4 ISO 100, APS-C10 mm, PENTAX K-5II s
Estimated Magnitude: 0.5


For comparison, Tiangong-2, without any tumbling and with stable attitude:

dyck-4zu0aa1e2p-jpg.459162

https://defence.pk/pdf/attachments/...2/?temp_hash=e4d24499e00af15d7774fb0ec52e7788
https://pbs.twimg.com/media/DYCk-4zU0AA1E2P.jpg
https://twitter.com/makkisse999/status/972959236274601984
#天宮2号 (TIANGONG-2)の通過を撮影。3月12日 5:20~5:21, 予報1.0等級。最高通過点高度67°。影出からMax高度を少し過ぎたあたりまで。アルクトゥルスと北斗七星の間を通過。1、2枚目が空いたのは連写用レリーズのロック忘れ。 追尾(ポータブル赤道儀) 露出20秒×4枚 比較明合成,
▲ TIANGONG 2 pass between Arcturus and Uras Major captured from Tanegashima on 12 March 2018, 5:20~5:21 JST, 20 seconds x 4, f/3.2, ISO 2500, APS-C21 mm, PENTAX K-5II s
Estimated Magnitude: 1.0


:enjoy:


______________________________________


5. Official Chinese statement after the "12 March 2018" event

More smoking gun, or rather smoking lasers!:flame:
:lol:


Chinese official statement, suggesting a successful first series of laser strikes:

"
Descent of China’s Tiangong-1 will not cause damage to earth: expert

March 14, 2018

According to the latest information issued by China’s manned space engineering office, since Feb. 25 to Mar. 4, 2018, Tiangong-1 was orbiting in stable condition and good shape at an average height of about 251.5 kilometers (perigee height: 238.6 km; apogee height: 264.4 km; orbital inclination: 42.79 degrees).

China has been monitoring Tiangong-1, Zhu said, adding that the space lab will burn up after entering the atmosphere and the remaining wreckage will fall into a designated area of the sea, without endangering the Earth’s surface.

Aerospace expert Pang Zhihao explained that an international tradition to handle retired large spacecrafts operated at near-earth orbits is to let them fall to an abyssal zone in southern Pacific Ocean far away from the continents.

Being called the “graveyard of spacecraft”, the water was the falling location for Mir space station and Progress spacecraft of Russia, and the Compton Gamma Ray Observatory of the US, Pang added.

http://en.people.cn/n3/2018/0314/c90000-9437070.html
,,

Coincidence? I think not!

200w_d-gif.459351


:enjoy:


______________________________________

6. The geomagnetic storm of 19 March 2018

Due to severe space weather caused by solar activities, a geomagnetic storm on 19 March 2018 is resulting in an increased decay rate, accelerating the date of reentry of Tiangong-1, around 3 April±1 day.

:flame:

dy0gaxlvwae2j5h-jpg.460997

▲ Geomagnetic storm on 19 March 2018

Radar imagery indicating a good physical integrity of Tiangong-1, allowing the final coup de grâce that will be given by piercing the forward part of the pressurized module, thus allowing all the remaining gaz to escape at high velocity, and generating an additional negative vector thrust (think of a coca cola bottle). This would eventually allow a safe reentry half an orbit later over the predesignated area over the Pacific Ocean.

1521630436722_09022017-22000-jpg.460998

▲ Tiangong-1 image taken with radiotelescope at Fraunhofer on 21.3.2018

1521630436722_02022018-45000-jpg.460999

▲ Tiangong-1 image taken with radiotelescope at Fraunhofer on 21.3.2018

:enjoy:
 
Last edited:
Tiangong-1's April 2018 Reentry V1.8 Part3

7. Tiangong-1's final week

Notice a forecast by some Western media, made 24 March 2018, confirming the last pass over China's Tianshan ASAT laser station before ending in the southern hemisphere. But the reentry zone is a little bit farther than in the South Pacific, continuing Northeastward in the South Atlantic, as no coup de grâce laser strikes have been modeled for the numerical simulation.

forec_37820u-jpg.461564

▲ According to the forecast made by Satview.org on 24 March 2018, the space lab's reentry will occur over the South Atlantic on Monday, 02 Apr 2018 at 21:22 UTC

dzdb74avwaexiqn-jpg.461565

▲ Other forecasts as of 24 March 2018: ESA 30 March-3 April; Aerospace 3.5 April±3 days; Chinese forum 2 April±1 day

Weather forecast over Tianshan ASAT laser station as of 24 March 2018, indicates that 31 March will be sunny and with some clouds at night, 1 April sunny and rainy at night, 2 April sunny and cloudy at night, 3 April sunny and with some clouds at night, meaning that the conditions for a laser targeting might not be optimal but still feasible.

screenshot-2018-3-24-10__10-png.461576

▲ Weather forecast over Tianshan ASAT laser station, as of 24 March 2018: 31 March sunny and with some clouds at night, 1 April sunny and rainy at night, 2 April sunny and cloudy at night, 3 April sunny and with some clouds at night.

25mar-forec_37820u-jpg.461723

▲ According to the forecast made by Satview.org on 25 March 2018, the space lab's reentry will occur over the Pacific on Monday, 02 Apr 2018 at 3:09 UTC

29mar2018-03utc09-tip_37820u-jpg.462305

▲ According to USstratcom (United States Strategic Command) forecast reported by Satview.org on 29 March 2018, the space lab's reentry will occur over the Pacific on Sunday, 01 Apr 2018 at 00:52 UTC

dzyiphwv4aakllf-jpg-large-jpg.462306

▲ Other forecasts as of 29 March 2018:
China Manned Space 1 April±1 day (UTC+8)
ESA 31 March-1 April afternoon;
JSpOC 1 April 00:52±15 hours (UTC);
Aerospace 1.1 April±1.0 days (UTC);
Chinese forum 2 April±1 day (UTC+8)


China Manned Space Engineering Office's (CMS) first official forecast

天宫一号目标飞行器轨道状态公告(3月28日)

据中国载人航天工程办公室发布,2018年3月28日,天宫一号运行在平均高度约202.3公里的轨道上(近地点高度约193.9公里、远地点高度约210.8公里、倾角约42.67度),预计北京时间2018年4月1日±1天再入大气层


Note:
"姿态稳定" (stable attitude) no longer mentioned since 19 March 2018
"形态未发生异常" (no anomaly occurred) no longer mentioned since 28 March 2018.

http://www.cmse.gov.cn/art/2018/3/28/art_810_32396.html


Note:

" 2018-3-29:
一直宣传是失去联系(就是失去控制),但老强调姿态稳定。
应该不是天宫一号内部整体断电了,否则姿态控制系统也将失效。这样的话,要么是宣传撒谎,姿态已经不稳定了,还说稳定;要么就是天宫的部分系统断电,至少姿态控制系统还能正常工作。"

https://lt.cjdby.net/forum.php?mod=redirect&goto=findpost&ptid=2465737&pid=75911131


solar-transit-tiangong1-jpg.462307

▲ Tiangong-1 28 March 2018 solar transit. Equipment: 150mm F/5 Refractor, Baader Herschel wedge, ASI 174MM, Red filter.

tiangong1-6fps.gif

▲ Tiangong-1 28 March 2018 solar transit. Equipment: 150mm F/5 Refractor, Baader Herschel wedge, ASI 174MM, Red filter.

From the above ground images, it is obvious that the APAS docking ring is no longer pointed forward, as very small period rotations have been observed.

giphy.gif

http://
https://media.giphy.com/media/BZhymY15wKUiI4GJ39/giphy.gif
https://twitter.com/Fraunhofer_FHRe/status/978616595609157635
▲ Highly topical radar image video of Tiangong-1 based on data recorded 27 March 2018. Altitude: 200,5 km perigee, Rotation speed has increased, now 2,2°/s -> 2:23 min per one turn

ron-myers-img_3317_1522416927-jpg.462679

▲ Tiangong-1 Pass By Jupiter. March 30, 2018

dzixl0dvwaa-nyj-jpg.462680

▲ Other forecasts as of 30 March 2018:
China Manned Space 1 April±1 day (UTC+8)
ESA 31 March night-1 April late evening (UTC);
JSpOC 1 April 21:29±10 hours (UTC);
Aerospace 1 April 20:30±14 hours (UTC);
Chinese forum 1 April 12:00±18 hours (UTC+8)


30mar2018-tip_37820u-jpg.462681

▲ According to USstratcom (United States Strategic Command) forecast reported by Satview.org on 30 March 2018, the space lab's reentry will occur over the Pacific on Sunday, 01 Apr 2018 at 00:52 UTC

Notice, the European Space Agency Space Debris Office (ESA) inacurrate forcast is due to the wrong assumption that a high-speed stream of particles from the sun, which was expected to reach Earth and influence our planet's geomagnetic field on March 30th, did not, in fact, have any effect. This means that the density of the upper atmosphere, through which Tiangong-1 is moving, did not increase as ESA predicted.

31mar2018-tip_37820u-jpg.462682

▲ According to USstratcom (United States Strategic Command) forecast reported by Satview.org on 31 March 2018, the space lab's reentry will occur over the Pacific on Sunday, 01 Apr 2018 at 21:29 UTC

Real time tracking:

screenshot-2018-3-31-viaspace-2-jpg.462683

▲ Real time tracking and forecast
太空网3月31日8:30分计算出的预测结果:天宫一号将于2018年4月1日22:00时±12小时重返地球大气层。
再入时间:2018年4月1日22:00时±12小时
北京时间: 2018-03-31 06:06:29
平均高度:188.98千米
下降速度:6.35千米/天
当前经度:91.83度
当前纬度:32.96度
http://www.viaspace.cn/tiangong-1.html



Real time forecast:
http://www.viaspace.cn/Scattermap.html


______________________________________


8. Tiangong-1's final day

China Manned Space Engineering Office (CMS) official forecast on 1 April 2018

天宫一号目标飞行器轨道状态公告(4月1日)

据中国载人航天工程办公室发布,2018年4月1日8时,天宫一号运行在平均高度约167.6公里的轨道上(近地点高度约161.0公里、远地点高度约174.3公里、倾角约42.70度),预计北京时间2018年4月2日再入大气层。
信息来源:中国载人航天工程办公室

On-Orbit Status Update for Tianggong-1 (Apr.1)

According to the announcement of China Manned Space Agency(CMSA),at 8 am, Apr.1,2018, Tiangong-1 stayed at an average altitude of about 167.6 km (perigee:161.0 km; apogee:174.3 km; inclination:42.70°). The estimated reentry window is 2 April, Beijing time.

http://en.cmse.gov.cn/art/2018/4/1/art_1763_32415.html


1 April 2018 TLE (0500 UTC):

TIANGONG 1
1 37820U 11053A 18091.00304286 .02715064 91996-5 19001-3 0 9990
2 37820 42.7428 200.6065 0007470 347.8126 12.9725 16.40004788373879

1apr2018-tip_37820u-jpg.462989

▲ According to USstratcom (United States Strategic Command) forecast reported by Satview.org on 1 April 2018 03:08 UTC, the space lab's reentry will occur over the Pacific on Sunday, 02 Apr 2018 at 00:15 UTC

dzquj9nuqae26hw-1-jpg.462990

▲ Other forecasts as of 1 April 2018:
China Manned Space 2 April (UTC+8)
ESA 1 April afternoon-2 April early morning (UTC);
JSpOC 2 April 0:15±6 hours (UTC);
Aerospace 1 April 20:30±7 hours (UTC);
Chinese forum (航天爱好者网) 2 April 5:00±10 hours (UTC+8)


Note: From the chart, the Apogee's altitude is seen temporarily rising as the perigee is lowering. Possibly due to external factor, maybe simply the barycentre during the Full Moon.


Fenyun-2 weather imagery of Tianshan ASAT laser station as of 1 March 2018, indicates that most of China including Anhui and Sichuan have clear sky, unlike Tianshan that is suffering from a band of clouds coming from the North-West, meaning that the conditions for a ground-based laser targeting might not be optimal. The alternative would be to delay the laser firing, a little bit until nighttime.

sevp_nsmc_wxcl_asc_e99_achn_lno_py_20180401031500000-jpg.462991

▲ Fenyun-2 weather imagery of Tianshan ASAT laser station as of 1 March 2018, indicates that most of China including Anhui and Sichuan have clear sky, unlike Tianshan that is suffering from a band of clouds coming from the North-West, meaning that the conditions for a laser targeting might not be optimal. The alternative would be to delay the laser firing, a little bit until nighttime.

Weather forecast over Tianshan ASAT laser station as of 1 April 2018, indicates that 1 April will be cloudy but with clear sky at night, 2 April cloudy and clear sky at night.

4月1日天山天气概况:今天:多云,气温:6℃ ~ -1℃;明天:多云,气温:8℃ ~ -3℃; 后天:多云,气温:7℃ ~ -1℃;

天山1日天气: 白天 多云 -1℃ 西北风3-4级转4-5级 ; 夜间 晴 6℃ 西北风3-4级转4-5级 ;
天山2日天气: 白天 多云 -3℃ 西北风3-4级转<3级 ; 夜间 晴 8℃ 西北风3-4级转<3级 ;

http://www.syqx.net/tianshan15tian/

screenshot-2018-4-1-10__10-png.462992

▲ Weather forecast over Tianshan ASAT laser station as of 1 April 2018, indicates that 1 April will be cloudy but with clear sky at night, 2 April cloudy and clear sky at night.
 
Last edited:
Tiangong-1's April 2018 Reentry V1.8 Part4

9. The coup de grâce

7463774-16x9-700x394-jpg.461563

▲ Artistic representation of the controlled reentry of Tiangong-1 through PLA ASAT laser beams

Target in range, all PLA Laser Stations ready to fire!:flame:


GO SHENGUANG ( 神光: DIVINE LIGHT)! GO TIANSHAN ASAT BRIGADE! GO PLA!



China Manned Space Engineering Office (CMS) official forecast on 2 April 2018

On-Orbit Status Update for Tianggong-1 (Apr.2)

According to the announcement of China Manned Space Agency(CMSA),at 5 am, Apr.2,2018, Tiangong-1 stayed at an average altitude of about 138.8 km (perigee: 136.0 km; apogee: 141.6 km; inclination:42.70°). The estimated reentry time is at 8:49 am (the earliest time is at 8:11 am and the latest time is at 9:33 am ), 2 April, Beijing time. The reentry center is located at 19.4°W and 10.2°S.

http://en.cmse.gov.cn/art/2018/4/2/art_1763_32418.html


On-Orbit Status Update for Tianggong-1 (Apr.2)

According to the announcement of China Manned Space Agency(CMSA),at 6:20 am, Apr.2,2018, Tiangong-1 stayed at an average altitude of about132.75 km (perigee:130.9 km; apogee: 134.6 km; inclination:42.70°). The estimated reentry time is at 8:42 am (the earliest time is at 8:24 am and the latest time is at 9:01 am ), 2 April, Beijing time. The reentry center is located at 40.4°W and 27.4°S.

http://en.cmse.gov.cn/art/2018/4/2/art_1763_32421.html


Tiangong-1 reenters the atmosphere

According to the announcement of China Manned Space Agency (CMSA), through monitoring and analysis by Beijing Aerospace Control Center (BACC) and related agencies, Tiangong-1 reentered the atmosphere at about 8:15 am, 2 April, Beijing time. The reentry falling area located in the central region of South Pacific. Most of the devices were ablated during the reentry process.

http://en.cmse.gov.cn/art/2018/4/2/art_1763_32429.html


2 April 2018 TLE (0500 UTC):

TIANGONG 1
1 37820U 11053A 18091.67159643 .06702538 93469-5 14209-3 0 9996
2 37820 42.7393 196.1141 0005983 335.0657 25.0237 16.46560555373989

USSTRATCOM OFFICIAL MESSAGE

The TIANGONG 1 satellite reentered the atmosphere Apr/02/2018 at 00:16 UTC with an approximate error of +/- 1 minute(s)

screenshot-2018-4-2-satview-tiangong-1-norad-37820u-png.463403

▲ According to USstratcom (United States Strategic Command) OFFICIAL MESSAGE reported by Satview.org on 2 April 2018, the space lab TIANGONG 1 satellite reentered the atmosphere Apr/02/2018 at 00:16 UTC with an approximate error of +/- 1 minute(s)

tg-1-2apr2018-jpg.463404

screenshot-2018-4-2-satellite-tracker-3d-png.463407

▲ Groundtrack of a very good pass of Tiangong-1 over China's laser stations on 2 March 2018, especially a frontal approach over Tianshan ASAT station, followed by a perfectly remote-controlled reentry over the South Pacific!

095519odzh89100rwc1eco-png.463410

▲ Reentry near Mutuaura, Tuamotu Archipelago.
先辟个谣,网上无论国内还是国外发表的再入照片都是假的,无论新西兰还是圣保罗都是看不到这次的落点的!
根据中美权威官方分析,本次落点的位置如下: 周围几乎没人,如果有这附近岛屿人拍的照片到可能是真的再入现场照片,其他地区都是假的





______________________________________
 

Attachments

  • Screenshot-2018-4-2 SATVIEW - TIANGONG 1 - Norad 37820U.png
    Screenshot-2018-4-2 SATVIEW - TIANGONG 1 - Norad 37820U.png
    118.1 KB · Views: 86
  • TG-1 2apr2018.JPG
    TG-1 2apr2018.JPG
    144.3 KB · Views: 86
  • Screenshot-2018-4-2 Satellite Tracker 3D.png
    Screenshot-2018-4-2 Satellite Tracker 3D.png
    330.3 KB · Views: 97
  • 095519odzh89100rwc1eco.png
    095519odzh89100rwc1eco.png
    1.8 MB · Views: 89
Last edited:
Back
Top Bottom