Dubious
RETIRED MOD
- Joined
- Jul 22, 2012
- Messages
- 37,717
- Reaction score
- 80
- Country
- Location
Shark skin and industrial engineers--400m yrs:
3 Cool Materials That Mimic Shark Skin - AOL On
Since the discovery of bacteria, conventional thinking has led people to kill microorganisms to control them. Yet, overuse and abuse of antibiotics, disinfectants and other kill strategies have contributed to the creation of superbugs such as MRSA and others commonly found in hospitals and the general community. As biocidal approaches have made bacteria stronger, new strategies are needed to manage bacterial growth while contributing to an overall healthy environment to protect people. Such a solution may be found in Sharklet™.
Sharklet is a simple solution for a complex problem. The patented, microscopic pattern manufactured by Sharklet Technologies creates a surface upon which bacteria do not like to grow. The Sharklet pattern is manufactured onto adhesive-backed skins that may be applied to high-touch areas to reduce the transfer of bacteria among people. Sharklet Technologies is also developing Sharklet-patterned medical devices including a Sharklet Urinary Catheter to help reduce hospital-acquired infections.
While the Sharklet pattern holds great promise to improve the way humans co-exist with microorganisms, the pattern was developed far outside of a laboratory. In fact, Sharklet was discovered via a seemingly unrelated problem: how to keep algae from coating the hulls of submarines and ships. In 2002, Dr. Anthony Brennan, a materials science and engineering professor at the University of Florida, was visiting the U.S. naval base at Pearl Harbor in Oahu as part of Navy-sponsored research. The U.S. Office of Naval Research solicited Dr. Brennan to find new antifouling strategies to reduce use of toxic antifouling paints and trim costs associated with dry dock and drag.
Dr. Brennan was convinced that using an engineered topography could be a key to new antifouling technologies. Clarity struck as he and several colleagues watched an algae-coated nuclear submarine return to port. Dr. Brennan remarked that the submarine looked like a whale lumbering into the harbor. In turn, he asked which slow moving marine animals don’t foul. The only one? The shark.
Dr. Brennan was inspired to take an actual impression of shark skin, or more specifically, its dermal denticles. Examining the impression with scanning electron microscopy, Dr. Brennan confirmed his theory. Shark skin denticles are arranged in a distinct diamond pattern with tiny riblets. Dr. Brennan measured the ribs’ width-to-height ratios which corresponded to his mathematical model for roughness – one that would discourage microorganisms from settling. The first test of Sharklet yielded impressive results. Sharklet reduced green algae settlement by 85 percent compared to smooth surfaces.
While the U.S. Office of Naval Research continued to fund Dr. Brennan’s work for antifouling strategies, new applications for the pattern emerged. Brennan evaluated Sharklet’s ability to inhibit the growth of other microorganisms. Sharklet proved to be a mighty defense against bacteria.
Similar to algae, bacteria take root singly or in small groups with the intent to establish large colonies, or biofilms.
Similar to other organisms, bacteria seek the path of least energy resistance. Research results suggest that Sharklet keeps biofilms from forming because the pattern requires too much energy for bacteria to colonize. The consequence is that organisms find another place to grow or simply die from inability to signal to other bacteria.
Dr. Brennan’s and Sharklet Technologies’ research has demonstrated Sharklet’s success in inhibiting the growth of Staph a., Pseudomonas aeruginosa, VRE, E. coli, MRSA and other bacterial species that cause illness and even death.
Sharklet Technologies is proud to produce products with the Sharklet pattern to help make the world a healthier, environmentally safer and better place. We’re equally honored to offer a biomimetic technology inspired by the shark which will allow humans and microorganisms to coexist in a sustainable and healthy way.
source: Technology | Sharklet
Speedo Fastskin full body suit - mimicking shark thermodynamics
Ever wonder why sharks have scales? They enable smooth, fast swimming, eliminating the drag caused by eddies that can form as water passes over the surface of an object. Considering that in the Olympics, the difference between winning and losing can be one-tenth of a second, crafting synthetic shark skin into swimsuits for athletes can definitely provide an edge. Speedo’s FastSkin line of swimsuits incorporates not just the texture of shark scales, but also the variability, changing the shape and texture over various parts of the bod for optimal aerodynamics. Applied to the exterior of ships, the same concept could even make Navy fleets faster and more energy-efficient.
BWH – Research: Dr. Jeffrey Karp: Biomimicry-Inspired Work Featuring Porcupine Quill Study | The Karp Lab
The Karp Lab | Category Archive | Research
3 Cool Materials That Mimic Shark Skin - AOL On
Since the discovery of bacteria, conventional thinking has led people to kill microorganisms to control them. Yet, overuse and abuse of antibiotics, disinfectants and other kill strategies have contributed to the creation of superbugs such as MRSA and others commonly found in hospitals and the general community. As biocidal approaches have made bacteria stronger, new strategies are needed to manage bacterial growth while contributing to an overall healthy environment to protect people. Such a solution may be found in Sharklet™.
Sharklet is a simple solution for a complex problem. The patented, microscopic pattern manufactured by Sharklet Technologies creates a surface upon which bacteria do not like to grow. The Sharklet pattern is manufactured onto adhesive-backed skins that may be applied to high-touch areas to reduce the transfer of bacteria among people. Sharklet Technologies is also developing Sharklet-patterned medical devices including a Sharklet Urinary Catheter to help reduce hospital-acquired infections.
While the Sharklet pattern holds great promise to improve the way humans co-exist with microorganisms, the pattern was developed far outside of a laboratory. In fact, Sharklet was discovered via a seemingly unrelated problem: how to keep algae from coating the hulls of submarines and ships. In 2002, Dr. Anthony Brennan, a materials science and engineering professor at the University of Florida, was visiting the U.S. naval base at Pearl Harbor in Oahu as part of Navy-sponsored research. The U.S. Office of Naval Research solicited Dr. Brennan to find new antifouling strategies to reduce use of toxic antifouling paints and trim costs associated with dry dock and drag.
Dr. Brennan was convinced that using an engineered topography could be a key to new antifouling technologies. Clarity struck as he and several colleagues watched an algae-coated nuclear submarine return to port. Dr. Brennan remarked that the submarine looked like a whale lumbering into the harbor. In turn, he asked which slow moving marine animals don’t foul. The only one? The shark.
Dr. Brennan was inspired to take an actual impression of shark skin, or more specifically, its dermal denticles. Examining the impression with scanning electron microscopy, Dr. Brennan confirmed his theory. Shark skin denticles are arranged in a distinct diamond pattern with tiny riblets. Dr. Brennan measured the ribs’ width-to-height ratios which corresponded to his mathematical model for roughness – one that would discourage microorganisms from settling. The first test of Sharklet yielded impressive results. Sharklet reduced green algae settlement by 85 percent compared to smooth surfaces.
While the U.S. Office of Naval Research continued to fund Dr. Brennan’s work for antifouling strategies, new applications for the pattern emerged. Brennan evaluated Sharklet’s ability to inhibit the growth of other microorganisms. Sharklet proved to be a mighty defense against bacteria.
Similar to algae, bacteria take root singly or in small groups with the intent to establish large colonies, or biofilms.
Similar to other organisms, bacteria seek the path of least energy resistance. Research results suggest that Sharklet keeps biofilms from forming because the pattern requires too much energy for bacteria to colonize. The consequence is that organisms find another place to grow or simply die from inability to signal to other bacteria.
Dr. Brennan’s and Sharklet Technologies’ research has demonstrated Sharklet’s success in inhibiting the growth of Staph a., Pseudomonas aeruginosa, VRE, E. coli, MRSA and other bacterial species that cause illness and even death.
Sharklet Technologies is proud to produce products with the Sharklet pattern to help make the world a healthier, environmentally safer and better place. We’re equally honored to offer a biomimetic technology inspired by the shark which will allow humans and microorganisms to coexist in a sustainable and healthy way.
source: Technology | Sharklet
Speedo Fastskin full body suit - mimicking shark thermodynamics
Ever wonder why sharks have scales? They enable smooth, fast swimming, eliminating the drag caused by eddies that can form as water passes over the surface of an object. Considering that in the Olympics, the difference between winning and losing can be one-tenth of a second, crafting synthetic shark skin into swimsuits for athletes can definitely provide an edge. Speedo’s FastSkin line of swimsuits incorporates not just the texture of shark scales, but also the variability, changing the shape and texture over various parts of the bod for optimal aerodynamics. Applied to the exterior of ships, the same concept could even make Navy fleets faster and more energy-efficient.
BWH – Research: Dr. Jeffrey Karp: Biomimicry-Inspired Work Featuring Porcupine Quill Study | The Karp Lab
The Karp Lab | Category Archive | Research
Last edited: