What's new

Indian Missiles - News, Developments, Tests, and Discussions

sorry for this may be kiddish question....

I was just seeing PAD interception of dhanush missile...
Now i had a question that is it possible that the attacking missile during its flight path may also be tracking any missile coming towards it to destroy it? second if yes what would it use to track may be a video camera or infrared or radar or mmw,,, dont know about all those things...
just had a scenarion in my mind like cutting a kite with another kite and u can always take your kite safe with moving on sides or down and not taking pech...

If the above scenario could be true that the attacking missile can take aversive action on detecting an incoming missile towards it. What could the defensive missile and attacking missiles do to do their work successfully..
U can take like an areoplane dogfight or something...

Please technical and logical answers..

Thanx
 
Hey Guys Wait For me..............


OPERATIONAL SCENARIOS


The Akash Group is extremely flexible in employment and deployment. It is best employed as a Group. However, Batteries can be employed on independent tasks if required. This is called the Autonomous Mode.

The four Batteries can be deployed in various geometric formations, as suited to the vulnerable area being protected and the extent desired to be sanitized from enemy air threat.

Similarly, the Battery can deploy its launchers in a way as to be optimal for target engagement as the threat is perceived ab-initio or as it evolves during combat. Mobility enables quick redeployment and the sensors can be so positioned as to achieve the optimum kill zone.


Launch of AKASH MISSILE

The Akash Group and Batteries can protect static, semi-mobile as well as mobile assets. These may be critical national assets in the hinterland or large armour formations thrusting into the enemy territory.

The GCC and the BCCs must be deployed in a manner, which will provide a clear line of sight (LOS) to the batteries, which may be placed upto a maximum of 30km away from it. This requires the mast of the communication antenna to be raised to the required appropriate height.

The 3D CAR antenna vehicle must be placed keeping in mind the screening constraints. The antenna vehicle needs to be aligned accurately by knowing its position and orientation with respect to the north. This information is made available to the CAR computer from ALNS. Care has been taken to align the antenna with the mounting of the ALNS and the system has been calibrated. The leveling of the antenna needs to be accurate in order to avoid any tilt, which would introduce a bias.

The BSR is also provided with ALNS to measure its latitude, longitude and orientation with respect to true north. This information is required by both GCC and the computer of the BSR.

The BLR is also provided with ALNS to measure its latitude and longitude and orientation with respect to the true north. This information is required by GCC, BCC and BLR computers.


The ASPL is a mobile launch system for missiles. It is based on a tracked vehicle and carries three prepared missiles for launch. The equipment operates fully automatically and is remotely controlled by the BCC (Battery Control Center) which may be upto 500m away. Control is effected via radio or line links. ALNS system of ASPL is also connected to its computer.





Akash has an advanced automated functioning capability. The 3D CAR automatically starts tracking targets at a distance of around 150 km providing early warning to the system and operators. The target track information is transferred to GCC. GCC automatically classifies the target. BSR starts tracking targets around a range of 100km. This data is transferred to GCC. The GCC performs multi-radar tracking and carries out track correlation and data fusion. Target position information is sent to the BLR which uses this information to acquire the targets.

The BCC which can engage a target(s) from the selected list at the earliest point of time is assigned the target in real time by the GCC. The availability of missiles and the health of the missiles are also taken into consideration during this process. Fresh targets are assigned as and when intercepts with assigned targets are completed. A single shot kill probability of 88% has been achieved by the system taking into consideration various parameters of the sensors, guidance command, missile capabilities and kill zone computations.

There are a number of possibilities for deploying Akash weapon system in autonomous mode and in group mode for neutralizing the threat profiles with defined multi-target engagement scenarios. In the Group mode we can have number of configurations to defend vulnerable areas depending upon nature and expected threat pattern, characteristics of threat. Similarly, multiple batteries in autonomous mode can be deployed to defend vulnerable areas/points.


Box configuration

Each battery is placed such that the four BCCs effectively cover the corner of a box of side 62 km. Each battery is defended by the other two adjacent batteries and the GCC is well within the coverage of all the four batteries. Full 360-degree radar coverage can be obtained without slewing the tracking radar. This deployment pattern can defend an area of 62km x 62km.


Box configuration
Linear array configuration

All the BCCs are arranged in a straight line. GCC can be placed such that the distance between GCC and each BCC never exceeds more than 30km. This type of pattern can defend a coverage zone with maximum length in any direction. It covers an area of 98km x 44km. This deployment pattern can act as air defense support to large extended moving columns.



Linear array configuration
Trapezoidal configuration

The placement of batteries is such that they are at the corner of a trapezoid. This pattern gives defense to the largest area as compared to any other pattern of deployment. This pattern can defend an area of size 5000 square km.

The Diamond and Semi-circles are other variations that can be adopted.



Trapezoidal configuration
Within each Battery the launchers can be sited in various configurations. Thus the battery can also adopt the Box, the Linear, the Trapezoid or other geometries
 
what can i do if ur senses are at fault ?
Go to a Doctor.. may Be.

Praveen and Join.... What can i say.. Mind Blowing pics !!

here you go with some more buddy

akash.jpg


acf8b6425d2233054cfffaabad85-grande.jpg




Akash%2BE-SHORADS%2Bfor%2BArmy.jpg
 
Whatever DRDO produced is nothing but long list of disappointments.

S300 series of Russia and Arrow from Israel are capable weapon systems. However, S300 series is aging with the each passing day.

I think F-16s, of PAF, have enough gadgetry in their electronic banks which could defeat these AD missiles.
 
Hill man.

Just exactly HOW MANY battles will a small fleet of AGING F16s going to win on their own.

PAF has 50 F16s yes just 50 not 500...

Yet Pakistanis answer to every Indian threat is F16..

Read the thread again you will see that DRDO HAL are now working very closely with dozens of missle projects with Israel and Russia

Akash (Indian)
Spyder Israeli
S300 Russian
AND the new PRITHVI ADD *(indian)
Barak 2 (indo isreali)

Means new 4th generation SAMS in all ranges and speeds

very impressive range of systems being inducted by india
 
Whatever DRDO produced is nothing but long list of disappointments.

S300 series of Russia and Arrow from Israel are capable weapon systems. However, S300 series is aging with the each passing day.

I think F-16s, of PAF, have enough gadgetry in their electronic banks which could defeat these AD missiles.

And you produce what? Oh I forgot. Nothing.

Akash is a world-class SAM and there are loads of documents, test documenting the same. So comment only when you know something.
 
In this Year officially start the Development of a turkish Anti-Radiation UAV. The Capabillities of this UAV shuld be similar like the israeli Harop. The UAV should have a Range up to 500 km and use a INS/GPS Navigation System. It can fly a preprogrammed Path and search with it's passive Radar Seeker for active Radars. If the Radar is detected the UAV attacking the Radar in a Top Attack. For Terminal Guidence the UAV should be equippt with IIR - Seeker and can be controlled by a RF - Datalink from an Operator on the Ground.

This SEAD UAV could be a usefull Solution for PAF against Indian SAM Sites near the Border.
 
Whatever DRDO produced is nothing but long list of disappointments.

S300 series of Russia and Arrow from Israel are capable weapon systems. However, S300 series is aging with the each passing day.

Disappointment for whom? :lol:

DRDO produces SAM that ca destroy a ballistic missile upto 80 km away from the Earth! DRDO produces missile that is enough agile to destroy a ballistic missile in its terminal phase. IAF ordered 1000 Akash missiles produced by DRDO.

I think F-16s, of PAF, have enough gadgetry in their electronic banks which could defeat these AD missiles.

Indian SAMs will hardly get F-16s to destroy because SU-30MKI, LCA, Mig-29MKI, Mirage-2009 will get them first. The SAMs and EW systems in India's arsenal is way more advanced than that of F-16s in PAF's service.
 
In this Year officially start the Development of a turkish Anti-Radiation UAV. The Capabillities of this UAV shuld be similar like the israeli Harop. The UAV should have a Range up to 500 km and use a INS/GPS Navigation System. It can fly a preprogrammed Path and search with it's passive Radar Seeker for active Radars. If the Radar is detected the UAV attacking the Radar in a Top Attack. For Terminal Guidence the UAV should be equippt with IIR - Seeker and can be controlled by a RF - Datalink from an Operator on the Ground.

This SEAD UAV could be a usefull Solution for PAF against Indian SAM Sites near the Border.

Let Turkey develop it first that talk about Pakistan getting it! Totally unrelated! Is there any indication that PAF is going to buy that? lol Next an Indian may say France is developing Neuron and India can destroy Pakistani SAM sites with it! Though Neuron has nothing to do with India! :blah:
 
Back
Top Bottom