nitesh
SENIOR MEMBER
- Joined
- May 8, 2008
- Messages
- 3,261
- Reaction score
- 0
The Week
Next: Surveillance radars in space
INTERVIEW/DR V.K. SARASWAT, CHIEF CONTROLLER (MISSILE SYSTEMS), DRDO
The ballistic missile interceptor is Saraswat's latest baby. As DRDO's programme director, he had spearheaded the concept of theatre defence systems and the integration of national air defence elements. He was responsible for the induction of India's first surface-to-surface missile, Prithvi, and its variants in the armed forces. This year, he hopes to hold a combined test of blasting incoming enemy missiles inside and outside the atmosphere. Excerpts from an interview:
How important was the ballistic missile interceptor test?
With this test, India has acquired the capability of air defence against incoming ballistic missiles. Once you have a ballistic missile defence system, a country with a small arsenal will think twice before launching a nuclear attack.
What are the specific advantages of the interceptors?
This interceptor can destroy missiles with a 2,000km range. In phase-II, we are developing above 2,000km class. For tracking missiles with 6,000km range, the interceptors will be helped by radars on satellites. Currently, the radars can cover an area of a radius of 600km. You need much more energy for missiles of higher range. In terms of seeker, the time is very less as the speed of the missile also increases.
How fast can the interceptor detect and react to a hostile missile?
Target classification takes just 30 seconds. Then the batteries [of the interceptor missile], which are in hot stand-by conditions, can be launched within 100-120 seconds. So in simple terms, an interceptor takes two to three minutes to react and destroy a hostile missile.
How good is the interceptor missile compared to the American Patriot missile?
The US system is developed for their defence. The threat profile of our country is different and the system has to be customised to our needs. So we cannot compare the two.
When are you expecting to complete the project?
By 2011, we expect to complete the development of missile systems. We will be conducting five tests each for endo- and exo-atmospheric (below and above 30km altitude) and integrated missile defence systems. Once that is over, the missile will be ready for deployment.
What is the technological capability of the programmes?
The system is fully automated and does not require human activation in case of an attack. Under the present system, the interceptors are on 'hot stand-by mode' and can take-off within 120 seconds of the detection of the incoming missile.
Any upcoming programmes or tech upgradations?
Till the 1990s, the challenge was to meet the range and warhead carrying capacity for the missile. But from 2002 onwards, the focus has been on accuracy of hit or hit to kill. This requires special technologies such as infrared and radio frequency seekers embedded in the missiles with high precision homing devices. We also have plans for a space-based surveillance radar system which could track any missile.
Next: Surveillance radars in space
INTERVIEW/DR V.K. SARASWAT, CHIEF CONTROLLER (MISSILE SYSTEMS), DRDO
The ballistic missile interceptor is Saraswat's latest baby. As DRDO's programme director, he had spearheaded the concept of theatre defence systems and the integration of national air defence elements. He was responsible for the induction of India's first surface-to-surface missile, Prithvi, and its variants in the armed forces. This year, he hopes to hold a combined test of blasting incoming enemy missiles inside and outside the atmosphere. Excerpts from an interview:
How important was the ballistic missile interceptor test?
With this test, India has acquired the capability of air defence against incoming ballistic missiles. Once you have a ballistic missile defence system, a country with a small arsenal will think twice before launching a nuclear attack.
What are the specific advantages of the interceptors?
This interceptor can destroy missiles with a 2,000km range. In phase-II, we are developing above 2,000km class. For tracking missiles with 6,000km range, the interceptors will be helped by radars on satellites. Currently, the radars can cover an area of a radius of 600km. You need much more energy for missiles of higher range. In terms of seeker, the time is very less as the speed of the missile also increases.
How fast can the interceptor detect and react to a hostile missile?
Target classification takes just 30 seconds. Then the batteries [of the interceptor missile], which are in hot stand-by conditions, can be launched within 100-120 seconds. So in simple terms, an interceptor takes two to three minutes to react and destroy a hostile missile.
How good is the interceptor missile compared to the American Patriot missile?
The US system is developed for their defence. The threat profile of our country is different and the system has to be customised to our needs. So we cannot compare the two.
When are you expecting to complete the project?
By 2011, we expect to complete the development of missile systems. We will be conducting five tests each for endo- and exo-atmospheric (below and above 30km altitude) and integrated missile defence systems. Once that is over, the missile will be ready for deployment.
What is the technological capability of the programmes?
The system is fully automated and does not require human activation in case of an attack. Under the present system, the interceptors are on 'hot stand-by mode' and can take-off within 120 seconds of the detection of the incoming missile.
Any upcoming programmes or tech upgradations?
Till the 1990s, the challenge was to meet the range and warhead carrying capacity for the missile. But from 2002 onwards, the focus has been on accuracy of hit or hit to kill. This requires special technologies such as infrared and radio frequency seekers embedded in the missiles with high precision homing devices. We also have plans for a space-based surveillance radar system which could track any missile.