For the length of this article
...
How the Atomic Age Gave Us Robot Surgeons
Your next surgery may be performed by a robot. It will be controlled by a doctor in the room, or perhaps by one across the country. What’s truly extraordinary, though, is where these surgery robots came from. Their origin stories stretch back to the radioactive labs of the atomic age.
Atomic Servants
As the US emerged from World War II, the newly-formed Atomic Energy Commission set out to repurpose and expand its nuclear programs to include uses here at home, like nuclear power and medicine.
All that atomic research meant exposing more and more researchers to deadly hazardous materials on an every-day basis—so it’s no surprise the Commission was interested in developing new tools that would let scientists work with radioactive material. It began commissioning leaders in robotics to build machines that could do the work while protecting the human body directing it—and a new era in robotics was born.
“Incredible engineering achievements occurred in a brief period of 15 years,” writes
Bijoy Ghosh about the era. Before, says Ghosh, a nuclear technician might shield himself with a periscope or a wall made out of lead bricks—seriously low-tech protection considering how dangerous the work was. Now, the Commission wanted to develop a better, safer way—by using what amounted to a mechanical version of the scientist’s own arms and hands.
These weren’t robots. They were machines that translated the movements of a human body into mechanical terms somewhere else—and even returned “force feedback” to the human so that they could deftly work with materials from far away. The engineer Raymond Goertz, who worked at the Argonne National Laboratory, developed something called a “teleoperated articulated arm,” often described as a Master-Slave Manipulator, or MSM.
It was, essentially, a handset gripped by the human that attached to a mechanical version at the other end—the human could manipulate the robotic hand with the motion of his own. At the Nevada Test site, dozens of these manipulator arms were soon installed in long hallways lined with “hot cells,” where radioactive material could be safely manipulated by a human in khakis and a button up from behind a protective window.
Many of these machines have been forgotten, but
CyberneticZoo’s Reuben Hoggett maintains an incredible archive of images and articles about Goertz and his contemporaries on his site.
Other researchers in the field, like GE’s John Payne, were on to the same idea. Luckily, Payne’s 1948 master-slave-manipulator is the subject of
this fantastic video preserved by the British Pathé.
Another preserved video reel from 1960 shows a nuclear manipulator serving tea and lighting a woman’s cigarette:
Even though they often get overlooked, these complex, experimental machines are the ancestors to a huge number of technologies in our own world—from the
Apple Watch’s taptic engine to the idea of “telepresence” in general. The Atomic Energy Commission had perhaps unintentionally spurred decades-worth of development on how humans telecommute.
“Their fundamental research on remote manipulators is still quite valid today,” says Ghosh. “Sixty years later we are still seeing ideas that this invention spawned,” adds
Reuben Hoggett.
A robot with a bellyache
If these massive, pulley-draped machines seemed alien, things would only get weirder from there. The idea of exoskeletons and master-slave manipulators exploded throughout pop culture—it was an idea too incredible not to immortalize.
Meanwhile, companies like GE continued developing robotic manipulators for atomic research—not always to great success. One notable failure was a 170,000-pound
Beetle, immortalized by a
Popular Science article from 1962 that described the tank-like manipulator—inside which a small human controlled its movements—as the biggest robot ever made. Here’s an incredible photo of Beetle unearthed
by Kotaku:
“If H-bombs struck, he could dash to the destruction zone to rescue injured people and scrape away the worst of the fallout dust,” exclaimed Popular Science.
But even the enthusiastic-til-the-end
Popular Science writers couldn’t ignore Beetle’s shortcomings. “When PS Chief Photographer Bill Morris and I first saw the Beetle, it wasn’t doing anything but sitting on a hangar floor,” the writer explained “They couldn’t start the engine.” Beetle was a gargantuan, oil-seeping “robot with a bellyache.”
It turned out that building bigger and bigger versions of Goertz’s old manipulators wasn’t the answer—it was making them
smaller was. Soon, other government agencies were working on smaller, defter versions of the same idea. A NASA researcher named Scott Fisher was developing virtual reality headsets and hand-worn interfaces that could interact with these virtual worlds. He even made up a word for what NASA was studying: telepresence.
Collaborating with a surgeon from Stanford on how these VR systems could be used for surgeons—and working with other robotics experts, developer a manipulator arm that could perform real surgery.
Soon, as Russel A. Faust explains in
Robotics in Surgery, the idea of telepresence surgery was blooming—in 1985, the first robotic-assisted surgery took place using the PUMA 560 robotic surgical arm, an early robotic surgical arm. Today robotic arms, telepresence machines, and tactile interfaces are used in everything from surgery to business meetings. We see them in action movies like the
Avengers and even
Star Wars.
It’s such a prevalent idea that we don’t think very much about where it came from—it’s almost as if it’s been there all along. But it’s amazing to realize that this futuristic technology leads back to the experimental designs of a few researchers working in the desert in the 1950s.