Water Car Engineer
ELITE MEMBER
- Joined
- Sep 25, 2010
- Messages
- 13,313
- Reaction score
- 8
- Country
- Location
Follow along with the video below to see how to install our site as a web app on your home screen.
Note: This feature may not be available in some browsers.
should i act neutral?
if yes than indeed i agree Arjun mk1 is better than basic al khalid
bt is comparable to Al khalid I.
though the Arjun armor is kanchan on par with chobham
For sure !
Volume 28 - Issue 05 :: Feb. 26-Mar. 11, 2011
INDIA'S NATIONAL MAGAZINE
from the publishers of THE HINDU
If i were you , I wont ask the Nazis the image of dear Fuhrer though
compare your defence budget and ours do you think its anywhere near for you to brow beat and chest thump infront of us!
what ever you build we will build something better coz we have more money don't forget
what is the exact weight of Arjun mkII?
some sites say it is to 60 tons.somE SAY 65-67 TONNES
some sites say that the weight will be decreased to 55tons
any one know the 100% confirmed one?
By that do you mean that Arjun was inducted after 26-Mar. 11, 2011.??For sure !
Volume 28 - Issue 05 :: Feb. 26-Mar. 11, 2011
INDIA'S NATIONAL MAGAZINE
from the publishers of THE HINDU
If i were you , I wont ask the Nazis the image of dear Fuhrer though
I dont mean nothing ... Check whom was I replying to and what for ... As for the date , the assessment was carried after the Arjun was inducted right ? Or is the tank being upgraded on a daily basis ? Or most ridiculous of all , you are confusing Arjun Mark 2 with the one in existence today ?By that do you mean that Arjun was inducted after 26-Mar. 11, 2011.??
Specs of this version of tank would remain same even after 2021.
So really, what was your logic ??
It is of common sense that any upgrade is ought to be better ,isn't it ??I dont mean nothing ... Check whom was I replying to and what for ... As for the date , the assessment was carried after the Arjun was inducted right ? Or is the tank being upgraded on a daily basis ? Or most ridiculous of all , you are confusing Arjun Mark 2 with the one in existence today ?
let it come out and then we will talk ... there's a Al Khalid 2 too ... how can some anonymously sourced article talk about yet-to-come Arjun Mark 2 and then compare it with Al Khalid ? Either compare the v2 of both or talk not at all ...It is of common sense that any upgrade is ought to be better ,isn't it ??
If previous version is so advanced then just think about new version with many new upgrades.
let it come out and then we will talk ... there's a Al Khalid 2 too ... how can some anonymously sourced article talk about yet-to-come Arjun Mark 2 and then compare it with Al Khalid ? Either compare the v2 of both or talk not at all ...
Heavier = Better ? Tell me and we can proceed further ...Try comparing the Al-Khalid with T 90 in the IA. You cant compare Al-Khalid with Arjun which is a heavier and far more heavily equipped tank.
Where is it sourced from ?Please close this topic as it is misleading and very old news.
Heavier = Better ? Tell me and we can proceed further ...
Where is it sourced from ?
the al khalid will have a redesigned turret,totally new tank with weight around 55 ton and 1500hp engineTry comparing the Al-Khalid with T 90 in the IA. You cant compare Al-Khalid with Arjun which is a heavier and far more heavily equipped tank.
For ensuring MBT survivability, the Defence Metallurgical Research Laboratory (DMRL)—located in Kanchanabagh, Hyderabad—has developed a Mk2 variant of its Kanchan modular armour, which was made by sandwiching composite panels (ceramic, alumina, fibre-glass and nickel-alloy) between rolled homogenous armour (RHA) plates to defeat APFDS or HEAT rounds. At the same time, the DRDO’s Pune-based Composites Research Centre (CRC) and the Research and Development Establishment, Engineers [R & D E(E)], have developed multi-layered multi-functional fibre-reinforced polymer (FRP) composite hull/turret sub-structures at much lower weights in comparison with metallic counterparts. More than 40 per cent weight savings over steel hull structures have been achieved. Also developed for the Arjun Mk2 is co-cured composites integral armour (CIA), which comprises ceramic tiles and rubber sandwiched between two FRP composites layers. While the outer FRP composite layer acts as a cover and provides confinement, the ceramic layer provides primary protection against ballistic impact, and the inner FRP composite layer acts as the structural part as well as secondary energy absorbing mechanism. The rubber layer isolates stiff and brittle ceramic tiles from structural member.
The CVRDE, with IMI’s help, has also redesigned the Arjun Mk1’s turret to incorporate modular sloped armour fittings, and has developed a slat-armour package to protect the MBT against anti-tank rocket-propelled grenade (RPG) attacks. It functions by placing a rigid barrier around the vehicle, which causes the shaped-charge warhead to explode at a relatively safe distance. For protecting the Arjun Mk2 against tandem-charge RPGs and guided anti-tank missiles, the CVRDE and IMI have co-developed a lightweight non-energetic reactive armour (NERA) package, comprising tiles in which two metal plates sandwich an inert liner, such as rubber. When struck by a shaped-charge’s metal jet, some of the impact energy is dissipated into the inert liner layer, and the resulting high-pressure causes a localised bending or bulging of the plates in the area of the impact. As the plates bulge, the point of jet impact shifts with the plate-bulging, increasing the effective thickness of the armour.
For ensuring fool-proof protection against new-generation anti-armour guided-missiles, the Arjun Mk2 will incorporate both multi-threat warning sensors and an active protection system (APS). The former, supplied by Elbit Systems, comprises four E-LWS sensors that can detect, categorise and pinpoint laser sources, including rangefinders, designators, beam-riders, and infra-red illuminators. E-LWS also enables direction indication for all threats, as well as audio and visual warnings. It is immune to reflection, gunfire, lightning, fire and self-electro-optical operations. The Iron Fist APS, being supplied by IMI, uses two fixed radar sensors to detect potential threats and measures distance and trajectory for providing the APS’ fire-control system (FCS) with data for calculation of engagement plans. The FCS uses two ELTA Systems-built conformal, distributed radars and an infra-red sensor called Tandir, developed by Elbit Systems. When a threat is identified as imminent, an explosive projectile interceptor is launched toward it from either of the two twin-tube rotating launchers housing fin-stabilised launch cannisters. The interceptor, shaped similar to a small mortar bomb, is designed to defeat the threat even when flying in very close proximity. Iron Fist can handle multiple targets simultaneously with different intercept methods, including multiple countermeasures fired at two simultaneous threats at the same sector. Unlike other systems, the Iron Fist uses only the blast effect to defeat the threat, crushing the soft components of a shaped-charge or deflecting and destabilising the guided-missile or kinetic rod in their flight. The interceptor is made of combustible materila, and is fully consumed in the explosion. Without the risk of shrapnel, the Iron Fist APS thus provides an effective, close-in protection for MBTs operating in dense, urban environment. Finally, a mobile camouflage system has been developed and integrated into the Arjun Mk2 in collaboration with Sweden’s Barracuda Camouflage Ltd to reduce the vehicle’s signature against all known sensors and smart munitions.
For enhancing structural survivability and firing accuracy, the Arjun Mk2 will do away with the existing electro-hydraulic turret control system (which is susceptible to impact damage and can cause a fire hazard) and will instead use a totally electronic modular electric gun and turret drive stabilisation (EGTDS) system supplied by Elbit Systems. The EGTDS uses azimuth/elevation motor drives with extremely rapid response time, low-voltage power, stabilised modes of operation, and manual back-up drives in both elevation and traverse. A motor drive-control unit transforms the power supply into two 3-phase systems. These supply and control the servo motors for alignment, stabilisation and slave mode of the turret/wea*pon according to the input signals of the sensors, control handles and active sight. The system assures increased safety since it eliminates the need for the hazardous, highly flammable hydraulic fluids. In addition, it offers smooth tracking at all speeds for very heavy turrets and guns and at extreme turret gun positions, while low power consumption leads to low infra-red signature as well as low-noise levels.
The Arjun Mk2 will also incorporate a brand-new Elbit-designed Commander’s panoramic sight (CAPS)--a dual axis stabilised line-of-sight, remote-operated, periscopic system for independent target acquisition, battlefield surveillance and main gun firing in a ‘hunter-killer’ auto-track mode. The CAPS will use a SAGEM-built Matis-STD thermal imager that operates in the 3-5 micron bandwidth, while the gunner’s sight will employ a THALES-built Catherine-FC thermal imager (operating in the 8-12 micron bandwidth. The Arjun Mk2’s turret will also housed an integrated battle management system (BMS) designed by Elbit Systems (and licence-built by Bharat Electronics Ltd), which provides rapid communications networking between the tactical tank commander and his subordinate units. It will enable the tank commander to plan missions, navigate, and continuously update situational awareness. The system will also record data for operational debriefing by using a digital data recorder, which will record and restore sight images and observation data collected during missions. This data can be shared with other elements, using the same network with the BMS, to report enemy targets. Such a concept is rapidly becoming an essential part of the digitised land forces integrated battlefield concept, combining MBTs, anti-armour teams, and attack helicopters in combined arms operations.
The Arjun Mk2’s loader will be able to load the 120mm rifled-bore main gun from a fully automated, fire-proof magazine, which will accommodate up to 10 ready rounds and deliver up to four types of ammunition types to the loader. In addition to APFSDS and HESH rounds, the Arjun Mk2 will make use of IMI-built APAM munitions designed to neutralise—especially in urban built-up terrain--tank-killer squads lurking with lethal anti-tank weapons. The APAM uses the proven concept of anti-personnel munitions based on controlled fragmentation. It deploys sub-munition shrapnel at defined intervals, covering a wide lethal area against soft targets. Each fragment is shaped to have enough kinetic energy to penetrate conventional body armour, or other materials. Also going on board the Arjun Mk2 is the laser-guided LAHAT anti-armour/anti-helicopter round, whose Israel Aerospace Industries-built target designator will be integrated with the MBT’s fire-control system. The tandem warhead-equipped LAHAT has a range of 8km when launched from a ground platform, and up to 13km, when deployed from high elevation. The missile has a 0.7 metre CEP when hitting its target at an angle of 30 degrees. Using the semi-active laser homing guidance method, LAHAT can be designated by the MBT’s gunner or through external designation from ground, mobile, or airborne observers. Firing the round requires minimal exposure in the firing position, and can be directed through the CAPS by only maintaining line--of-sight during missile flight. The missile’s trajectory can be preselected for either top attack (against MBT) or direct attack (against helicopter) engagement.