The B-1B Lancer was developed by Rockwell International, now Boeing Defense And Space Group, and is the US Air Force long-range strategic bomber. The B-1B has the largest internal payload of any current bomber. The B-1B became operational in 1986. In July 2001, the US Department of Defense announced plans to cut its B-1B inventory from 92 to 67 as a cost-saving measure. The first aircraft was withdrawn from service in August 2002. Following Operation Iraqi Freedom, it was decided that there should be 67 aircraft in the fleet.
The remaining fleet operates from Dyess AFB, Texas (38 aircraft) and Ellsworth AFB, South Dakota (29 aircraft). The B-1B is expected to in be service until 2025
In March 2008, the B-1B became the first aircraft to fly at supersonic speed using synthetic fuel. The fuel was a 50/50 blend of conventional JP-8 petroleum and a synthetic fuel derived from natural gas using the Fischer-Tropsch process. The flight was part of an ongoing USAF programme to certify the alternative fuel for all USAF aircraft.
In February 2009 Boeing received a $45m contract from the US Air Force to upgrade avionics software on the B-1 heavy bomber. The contract ensures that B-1 crews are well equipped to meet its ever-expanding role.
Cockpit
The aircraft is operated by four crew: pilot, co-pilot, defensive systems operator (DSO) and offensive systems operator (OSO).
The DSO station is equipped with the interface for AIL Systems, Inc's ALQ-161 defensive avionics system and a Honeywell multifunction display linked to the aircraft's offensive avionics system (OAS). The OSO station is equipped with two Honeywell multifunction displays linked to the OAS.
Rockwell Collins received a contract in February 2004 to upgrade the displays to 5in×7in colour multifunction displays using active matrix liquid crystal (AMLCD) technology.
WEAPONS
The B-1B is no longer armed with nuclear weapons but is capable of carrying the AGM-86B air launch cruise missile (ALCM) and the AGM-69 short-range attack missile.
The aircraft has three internal weapon bays and six external hardpoints under the fuselage. The maximum internal weapons payload is 75,000lb and maximum external weapons payload is 59,000lbs.
The B-1B weapons payload is: 24 GBU-31 joint direct attack munition (JDAM) at one time or a combination of 24 mk84 2,000lb general purpose bombs, eight mk65 naval mines, 84 mk82 500lb general purpose bombs, 84 mk62 500lb naval mines, 30 CBU-87, -89, -97 cluster munitions, 30 CBU-103, -104, -105 wind-corrected munitions dispensor (WCMD), 24 AGM-158 joint air to surface stand-off missiles (JASSM) or 12 AGM-154 joint stand-off weapons (JSOW).
The Boeing JDAM uses global positioning system / inertial navigation guidance for delivery of the 1,000lb mk83, 1,000lb BLU-110, 2,000lb mk84 and 2,000lb BLU-109. It has a range up to 15 miles and strike precision within 13m.
The Lockheed Martin JASSM is a long-range precision standoff cruise missile with digital jam-resistant global positioning system (GPS) / inertial navigation guidance and infrared seeker. JASSM weighs 1,020kg (2,250lb) and has a range over 370km (200nm) and a dual-mode penetrator and blast fragmentation warhead.
JASSM-ER has a range of 926km (500nm). The B-1B successfully launched the first JASSM-ER missile in June 2006.
The Raytheon JSOW AGM-154A carries BLU-97 combined effects bomblets and is in full-rate production. The blast / fragmentation unitary variant AGM-154A-1 which incorporates the 500lb BLU-111 (mk82) is under development.
The AGM-154B carries BLU-108 sensor fused weapon (SFW) submunitions and has completed engineering and manufacturing development (E&MD).
AGM-154C (JSOW-C) entered full-rate production in February 2005. It incorporates an uncooled imaging infrared (IIR) terminal seeker and tracker and has a BROACH dual-stage blast / fragmentation and/or penetrator warhead, developed by BAE Systems. JSOW has an unpowered range of 22km (12nm) low-altitude launch, 130km (70nm) high-altitude launch and a powered range of up to 325km (175nm).
B-1B aircraft were fitted with the AN/AAQ-33 Lockheed Martin Sniper ATP advanced targeting pod in June 2008. Sniper includes a mid-wave FLIR (forward-looking infrared), dual mode laser, CCD-TV, laser spot tracker and IR marker. Sniper gives the B-1B the capability for self- identification of targets and bomb damage assessment. The first series of flight tests with the new pod took place in February 2007. The B-1B equipped with the Sniper ATP made its first operational deployment in August 2008 in support of Operation Enduring Freedom.
Radar
The Northrop Grumman APQ-164 offensive radar system is a multi-mode radar with an electronically scanned phased array antenna, which provides high-resolution terrain mapping, velocity data, beacon modes, terrain avoidance, terrain following, position data, weather detection, rendezvous and calibration modes.
http://upload.wikimedia.org/wikipedia/commons/thumb/a/af/RIAT2004-B1B.jpg/800px-RIAT2004-B1B.jpg
Engines
The B-1B is equipped with four 30,000lb thrust class F101-GE-102 turbofan engines from General Electric. An in-flight refuelling receptacle allows refuelling from a KC-10 or a KC-135 tanker.