What's new

The Legendary Nuclear Path : Indian Nuclear Program Milestones

Indira Gandhi Centre for Atomic Research, Kalpakkam, near Chennai

newigc21.jpg



500 MWe Prototype Fast Breeder Reactor is the flagship project of the centre and it also developed the nuclear rector for India's Arihant class nuclear submarines...



IGCAR was established in the year 1971, under the Department of Atomic Energy, Government of India.
The centre is engaged in broad based multidisciplinary programme of scientific research and advanced engineering directed towards the development of Fast Breeder Reactor technology.
Fast Breeder Test Reactor based on unique mixed Plutonium Uranium Carbide fuel, First of its kind in the world and KAMINI Reactor, the only operating Reactor in the World using U233 fuel are successfully operated.
The design of 500 MWe Prototype Fast Breeder Reactor is completed and the construction is in progress.
 
. .
Bhabha Atomic Research Centre, Mumbai

barctopcentenary_03.gif


Its the largest nuclear research centre in India. Little info is published about the projects. But the main future civilian nuclear project is Advanced Heavy Water Reactor (AHWR).


energy-vision-26.jpg


13z0a1.jpg


2expl46.jpg



All the pics and info from respective DAE centres websites.
 
. .
Another excellent thread by Xinix and awesome pics by Kinetic!

One question: Arent there any restrictions when posting these images? Just asking.
 
.
No restrictions on Images, they should just nit violate copyrights and u can pots a max of 8 pics in a single post.
 
.
Nuclear Power Coproration of India

(Picture : Work in progress at Kudankulam (Tamilnad state) site)
visit NPCIL Homepage at Nuclear Power Corporation of India Ltd.



Total Nuclear Power Generation Capacity: 2770 MWe

Home | Atomic Energy Commission | Research | Power | Industry

Nuclear Power Corporation Ltd. (NPCIL) is the public sector company which owns, constructs and operates nuclear power plants in India. NPCIL which is spearheading the nuclear power programme in India plans to put up a total installed nuclear power capacity of 20,000 MWe by the year 2020.

India's Nuclear Power Programme has fourteen reactors in operation that includes 2 Boiling Water Reactors (BWR) and 12 Pressurised Heavy Water Reactors (PHWR). It has eight power reactors under construction at present of which two PHWRs of 540 MWe capacity each are at Tarapur in Maharashtra, four 220 Mwe capacity power reactors two each at Kaiga (Karnataka) and Rawatbhata (Rajasthan) and two VVERs of 1000 MWe capacity each at Kudankulam(Tamilnadu).

Operating Nuclear Power Reactors


Location
Type/Capacity
Tarapur BWR/2x160 MWe
Rajasthan PHWR/1x100, 1x200 MWe and 2 X 220 Mwe
Kalpakkam PHWR/Unit 1-170 MWe Unit 2-220 MWe
Narora PHWR/2x220 MWe
Kakrapara PHWR/2x220 MWe
Kaiga 2 PHWR units of 220 MWe
Nuclear Power Reactors Under Construction

Location
Type/Capacity
Expected Criticality Date
Tarapur
(3 & 4) PHWR/2x540 MWe
Unit 3- July 2006
Unit 4- October 2005 (Attained Criticality on 06-March-2005)
Kaiga
(3& 4) PHWR / 2x220 MWe
Unit 3- December 2006
Unit 4- June 2007
Rajasthan
( 5 & 6) PHWR/ 2x220 MWe
Unit 5- May 2007
Unit 6- November 2007
Kudankulam
Tamilnadu VVER/ 2 x 1000 MWe
The project is being implemented under the Inter-Governmental Agreement (IGA) signed between India and a Supplement to the IGA signed between India and Russian Federation .
Unit - 1 2007
Unit - 2 2008
Home | Atomic Energy Commission | Research | Power | Industry
 
. . .
XiNiX thanks for such a informative thread, remarkable efforts which deserved appreciation and I really admire your post and threads. Thanks for educating a people like me.

regards
Jailer
 
.
India has a flourishing and largely indigenous nuclear power program and expects to have 20,000 MWe nuclear capacity on line by 2020 and 63,000 MWe by 2032. It aims to supply 25% of electricity from nuclear power by 2050.
Because India is outside the Nuclear Non-Proliferation Treaty due to its weapons program, it has been for 34 years largely excluded from trade in nuclear plant or materials, which has hampered its development of civil nuclear energy until 2009.
Due to these trade bans and lack of indigenous uranium, India has uniquely been developing a nuclear fuel cycle to exploit its reserves of thorium.
Now, foreign technology and fuel are expected to boost India's nuclear power plans considerably. All plants will have high indigenous engineering content.
India has a vision of becoming a world leader in nuclear technology due to its expertise in fast reactors and thorium fuel cycle.
Electricity demand in India is increasing rapidly, and the 792 billion kilowatt hours produced in 2007 was triple the 1990 output, though still represented only some 700 kWh per capita for the year. With huge transmission losses, this resulted in only 544 billion kWh consumption. Coal provides 68% of the electricity at present, but reserves are limited. Gas provides 8%, hydro 15%. The per capita electricity consumption figure is expected to double by 2020, with 6.3% annual growth, and reach 5000-6000 kWh by 2050.

Nuclear power supplied 15.8 billion kWh (2.5%) of India's electricity in 2007 from 3.7 GWe (of 110 GWe total) capacity and this will increase steadily as imported uranium becomes available and new plants come on line. In the year to March 2010, 22 billion kWh was forecast, and for the 2010-11 year 24 billion kWh is expected. For 2011-12, 32 billion kWh is now forecast. Some 300 reactor-years of operation had been achieved by mid 2009. India's fuel situation, with shortage of fossil fuels, is driving the nuclear investment for electricity, and 25% nuclear contribution is foreseen by 2050, when 1094 GWe of base-load capacity is expected to be required. Almost as much investment in the grid system as in power plants is necessary.

In 2006 almost US$ 9 billion was committed for power projects, including 9.35 GWe of new generating capacity, taking forward projects to 43.6 GWe and US$ 51 billion. In late 2009 the government said that it was confident that 62 GWe of new capacity would be added in the 5-year plan to March 2012, and best efforts were being made to add 12.5 GWe on top of this, though only 18 GWe had been achieved by the mid point of October 2009, when 152 GWe was on line. The government's 5-year plan for 2012-17 was targeting the addition of 100 GWe over the period. Three quarters of this would be coal- or lignite-fired, and only 3.4 GWe nuclear, including two imported 1000 MWe units at one site and two indigenous 700 MWe units at another.

A KPMG report in 2007 said that India needed to spend US$ 120-150 billion on power infrastructure over the next five years, including transmission and distribution (T&D). It said that T&D losses were some 30-40%, worth more than $6 billion per year. A 2010 estimate shows big differences among states, with some very high, and a national average of 27% T&D loss, well above the target 15% set in 2001 when the average figure was 34%.

The target since about 2004 has been for nuclear power to provide 20 GWe by 2020, but in 2007 the Prime Minister referred to this as "modest" and capable of being "doubled with the opening up of international cooperation." However, it is evident that even the 20 GWe target will require substantial uranium imports. Late in 2008 NPCIL projected 22 GWe on line by 2015, and the government was talking about having 50 GWe of nuclear power operating by 2050. Then in June 2009 NPCIL said it aimed for 60 GWe nuclear by 2032, including 40 GWe of PWR capacity and 7 GWe of new PHWR capacity, all fuelled by imported uranium. This target was reiterated late in 2010.

Longer term, the Atomic Energy Commission however envisages some 500 GWe nuclear on line by 2060, and has since speculated that the amount might be higher still: 600-700 GWe by 2050, providing half of all electricity.

Indian nuclear power industry development

Nuclear power for civil use is well established in India. Its civil nuclear strategy has been directed towards complete independence in the nuclear fuel cycle, necessary because it is excluded from the 1970 Nuclear Non-Proliferation Treaty (NPT) due to it acquiring nuclear weapons capability after 1970. (Those five countries doing so before 1970 were accorded the status of Nuclear Weapons States under the NPT.)

As a result, India's nuclear power program has proceeded largely without fuel or technological assistance from other countries (but see later section). Its power reactors to the mid 1990s had some of the world's lowest capacity factors, reflecting the technical difficulties of the country's isolation, but rose impressively from 60% in 1995 to 85% in 2001-02. Then in 2008-10 the load factors dropped due to shortage of uranium fuel.


India's nuclear energy self-sufficiency extended from uranium exploration and mining through fuel fabrication, heavy water production, reactor design and construction, to reprocessing and waste management. It has a small fast breeder reactor and is building a much larger one. It is also developing technology to utilise its abundant resources of thorium as a nuclear fuel.

The Atomic Energy Establishment was set up at Trombay, near Mumbai, in 1957 and renamed as Bhabha Atomic Research Centre (BARC) ten years later. Plans for building the first Pressurised Heavy Water Reactor (PHWR) were finalised in 1964, and this prototype - Rajasthan-1, which had Canada's Douglas Point reactor as a reference unit, was built as a collaborative venture between Atomic Energy of Canada Ltd (AECL) and NPCIL. It started up in 1972 and was duplicated Subsequent indigenous PHWR development has been based on these units.

The Indian Atomic Energy Commission (AEC) is the main policy body.

The Nuclear Power Corporation of India Ltd (NPCIL) is responsible for design, construction, commissioning and operation of thermal nuclear power plants. At the start of 2010 it said it had enough cash on hand for 10,000 MWe of new plant. Its funding model is 70% equity and 30% debt financing. However, it is aiming to involve other public sector and private corporations in future nuclear power expansion, notably National Thermal Power Corporation (NTPC) - see subsection below. NTPC is largely government-owned, and the 1962 Atomic Energy Act prohibits private control of nuclear power generation, though it allows minority investment. As of late 2010 the government had no intention of changing this to allow greater private equity in nuclear plants.

India's operating nuclear power reactors:

Reactor State Type MWe net, each Commercial operation Safeguards status
Tarapur 1 & 2 Maharashtra
BWR
150
1969
item-specific
Kaiga 1 & 2 Karnataka
PHWR
202
1999-2000

Kaiga 3 Karnataka
PHWR
202
2007

Kakrapar 1 & 2 Gujarat
PHWR
202
1993-95
in 2012 under new agreement
Kalpakkam 1 & 2 (MAPS) Tamil Nadu
PHWR
202
1984-86

Narora 1 & 2 Uttar Pradesh
PHWR
202
1991-92
in 2014 under new agreement
Rajasthan 1 Rajasthan
PHWR
90
1973
item-specific
Rajasthan 2 Rajasthan
PHWR
187
1981
item-specific
Rajasthan 3 & 4 Rajasthan
PHWR
202
1999-2000
early 2010 under new agreement
Rajasthan 5 & 6 Rajasthan PHWR 202 Feb & April 2010 Oct 2009 under new agreement
Tarapur 3 & 4 Maharashtra
PHWR
490
2006, 05

Total (19)
4183 MWe

Kalpakkam also known as Madras/MAPS
Rajasthan/RAPS is located at Rawatbhata and sometimes called that
Kaiga = KGS, Kakrapar = KAPS, Narora = NAPS
dates are for start of commercial operation.


The two Tarapur 150 MWe Boiling Water Reactors (BWRs) built by GE on a turnkey contract before the advent of the Nuclear Non-Proliferation Treaty were originally 200 MWe. They were down-rated due to recurrent problems but have run well since. They have been using imported enriched uranium and are under International Atomic Energy Agency (IAEA) safeguards. However, late in 2004 Russia deferred to the Nuclear Suppliers' Group and declined to supply further uranium for them. They underwent six months refurbishment over 2005-06, and in March 2006 Russia agreed to resume fuel supply. In December 2008 a $700 million contract with Rosatom was announced for continued uranium supply to them.

The two small Canadian (Candu) PHWRs at Rajasthan nuclear power plant started up in 1972 & 1980, and are also under safeguards. Rajasthan-1 was down-rated early in its life and has operated very little since 2002 due to ongoing problems and has been shut down since 2004 as the government considers its future. Rajasthan-2 was restarted in September 2009 after major refurbishment, and running on imported uranium at full rated power.

The 220 MWe PHWRs (202 MWe net) were indigenously designed and constructed by NPCIL, based on a Canadian design.

The Kalpakkam (MAPS) reactors were refurbished in 2002-03 and 2004-05 and their capacity restored to 220 MWe gross (from 170). Much of the core of each reactor was replaced, and the lifespans extended to 2033/36.

Kakrapar unit 1 was repaired and upgraded in 2009, as was Narora-2, with cooling channel replacement.

More recent nuclear power developments in India

The new Tarapur 3&4 reactors of 540 MWe gross (490 MWe net) are developed indigenously from the 220 MWe (gross) model PHWR and were built by NPCIL.

The first - Tarapur 4 - started up in March 2005, was connected to the grid in June and started commercial operation in September. Tarapur-4's criticality came five years after pouring first concrete and seven months ahead of schedule. Its twin - unit 3 - was about a year behind it and criticality was achieved in May 2006, with grid connection in June and commercial operation in August, five months ahead of schedule.

Future indigenous PHWR reactors will be 700 MWe gross (640 MWe net). The first four will be built at Kakrapar and Rajasthan. According to NPCIL in March 2010, work on all four has started and they are due on line by 2017 after 60 months construction from first concrete to criticality.

Russia's Atomstroyexport is building the country's first large nuclear power plant, comprising two VVER-1000 (V-392) reactors, under a Russian-financed US$ 3 billion contract. A long-term credit facility covers about half the cost of the plant. The AES-92 units at Kudankulam in Tamil Nadu state are being built by NPCIL and will be commissioned and operated by NPCIL under IAEA safeguards. The turbines are made by Leningrad Metal Works. Unlike other Atomstroyexport projects such as in Iran, there have been only about 80 Russian supervisory staff on the job.

Russia is supplying all the enriched fuel, though India will reprocess it and keep the plutonium. The first unit was due to start supplying power in March 2008 and go into commercial operation late in 2008, but this schedule has slipped by more than two years. The second unit is about 6-8 months behind it. While the first core load of fuel was delivered early in 2008 there have been delays in supply of some equipment and documentation. Control system documentation was delivered late, and when reviewed by NPCIL it showed up the need for significant refining and even reworking some aspects. Fuel loading of unit 1 will not now take place until late 2010, though in October 2009 NPCIL said the unit was 94% complete and that 99% of the equipment was on site.

A small desalination plant is associated with the Kudankulam plant to produce 426 m3/hr for it using 4-stage multi-vacuum compression (MVC) technology. Another RO plant is in operations to supply local township needs.

Under plans for the India-specific safeguards to be administered by the IAEA in relation to the civil-military separation plan, eight further reactors will be safeguarded (beyond Tarapur 1&2, Rajasthan 1&2, and Kudankulam 1&2): Rajasthan 3&4 by 2010, Rajasthan 5&6 by 2008, Kakrapar 1&2 by 2012 and Narora 1&2 by 2014.

India's nuclear power reactors under construction:

Reactor Type MWe gross, each Project control Commercial operation due
Safeguards status
Kaiga 4
PHWR
220 MWe
NPCIL
11/2010

Kudankulam 1
PWR (VVER)
1000 MWe
NPCIL
12/2010
item-specific
Kudankulam 2
PWR (VVER)
1000 MWe
NPCIL
mid 2011
item-specific
Kalpakkam PFBR
FBR
500 MWe
Bhavini
9/2011, or 2012
-
Total (4)
2572 MWe net,
2720 MWe gross

Rajasthan/RAPS also known as Rawatbhata


Kaiga 3 started up in February, was connected to the grid in April and went into commercial operation in May 2007. Unit 4 was scheduled about six months behind it, but is about 30 months behind original schedule due to shortage of uranium - it is not safeguarded so cannot use imported uranium. RAPP-5 started up in November 2009, using imported Russian fuel, and in December it was connected to the northern grid. RAPP-6 started up in January 2010 and was grid connected at the end of March. Both are now in commercial operation.

In mid 2008 Indian nuclear power plants were running at about half of capacity due to a chronic shortage of fuel. The situation was expected to persist for several years if the civil nuclear agreement faltered, though some easing in 2008 was due to the new Turamdih mill in Jharkhand state coming on line (the mine there was already operating). Political opposition has delayed new mines in Jharkhand, Meghalaya and Andhra Pradesh.

A 500 MWe prototype fast breeder reactor (FBR) is under construction at Kalpakkam by BHAVINI (Bharatiya Nabhikiya Vidyut Nigam Ltd), a government enterprise set up under DAE to focus on FBRs. It was expected to start up about the end of 2010 and produce power in 2011, but this schedule appears to be delayed about 12-15 months. Four further oxide-fuel fast reactors are envisaged but slightly redesigned by the Indira Gandhi Centre to reduce capital cost. One pair will be at Kalpakkam, two more elsewhere. (See also section below.)

In contrast to the situation in the 1990s, most reactors under construction are on schedule (apart from fuel shortages 2007-09), and the first two - Tarapur 3 & 4 – were slightly increased in capacity. These and future planned ones were 450 (now 490) MWe versions of the 202 MWe domestic products. Beyond them and the last three 202 MWe units, future units will be nominal 700 MWe.

The government envisages setting up about ten PHWRs of 700 MWe capacity to about 2023, fuelled by indigenous uranium, as stage 1 of its nuclear program. Stage 2 - four 500 MWe FBRs - will be concurrent.

Construction costs of reactors as reported by AEC are about $1200 per kilowatt for Tarapur 3 & 4 (540 MWe), $1300/kW for Kaiga 3 & 4 (220 MWe) and expected $1700/kW for the 700 MWe PHWRs with 60-year life expectancy.
 
.
India's uranium mines and mills - existing and announced

State, district Mine Mill Operating from tU per year
Jharkhand
Jaduguda
Jaduguda
1967 (mine)
1968 (mill)
175 total from mill

Bhatin
Jaduguda
1967


Narwapahar
Jaduguda
1995


Bagjata
Jaduguda
2009?
Jharkhand, East Singhbum dist.
Turamdih
Turamdih
2003 (mine)
2008 (mill)
190 total from mill

Banduhurang
Turamdih
2007


Mohuldih
Turamdih
2011

Meghalaya
Kylleng-Pyndeng-Shahiong
(Domiasiat), Mawthabah, Wakhyn
Mawthabah
2012, maybe 2010

340
Andhra Pradesh, Nalgonda dist.
Lambapur-Peddagattu
Seripally /Mallapuram

2012
130
Andhra Pradesh, Kadapa dist.
Tummalapalle
Tummalapalle
2011
220
Karnataka, Gulbarga dist. Gogi Diggi 2012?


However, India has reserves of 290,000 tonnes of thorium - about one quarter of the world total, and these are intended to fuel its nuclear power program longer-term (see below).

In September 2009 largely state-owned Oil & Natural Gas Corporation ONCC proposed to form a joint venture with UCIL to explore for uranium in Assam.

Uranium imports

By December 2008, Russia's Rosatom and Areva from France had contracted to supply uranium for power generation, while Kazakhstan, Brazil and South Africa were preparing to do so. The Russian agreement was to provide fuel for PHWRs as well as the two small Tarapur reactors, the Areva agreement was to supply 300 tU.

In February 2009 the actual Russian contract was signed with TVEL to supply 2000 tonnes of natural uranium fuel pellets for PHWRs over ten years, costing $780 million, and 58 tonnes of low-enriched fuel pellets for the Tarapur reactors. The Areva shipment arrived in June 2009. RAPS-2 became the first PHWR to be fuelled with imported uranium, followed by units 5 & 6 there.

In January 2009 NPCIL signed a memorandum of understanding with Kazatomprom for supply of 2100 tonnes of uranium concentrate over six years and a feasibility study on building Indian PHWR reactors in Kazakhstan. NPCIL said that it represented "a mutual commitment to begin thorough discussions on long-term strategic relationship." Under this agreement, 300 tonnes of natural uranium will come from Kazakhstan in the 2010-11 year. Another 210 t will come from Russia

In September 2009 India signed uranium supply and nuclear cooperation agreements with Namibia and Mongolia. In March 2010 Russia offered India a stake in the Elkon uranium mining development in its Sakha Republic, and agreed on a joint venture with ARMZ Uranium Holding Co.

In July 2010 the Minister for Science & Technology reported that India had received 868 tU from France, Russia & Kazakhstan in the year to date: 300 tU natural uranium concentrate from Areva, 58 tU as enriched UO2 pellets from Areva, 210 tU as natural uranium oxide pellets from TVEL and 300 tU as natural uranium from Kazatomprom.

As of August 2010 the DAE said that seven reactors (1400 MWe) were using imported fuel and working at full power, nine reactors (2630 MWe) used domestic uranium.

Uranium fuel cycle

DAE's Nuclear Fuel Complex at Hyderabad undertakes refining and conversion of uranium, which is received as magnesium diuranate (yellowcake) and refined. The main 400 t/yr plant fabricates PHWR fuel (which is unenriched). A small (25 t/yr) fabrication plant makes fuel for the Tarapur BWRs from imported enriched (2.66% U-235) uranium. Depleted uranium oxide fuel pellets (from reprocessed uranium) and thorium oxide pellets are also made for PHWR fuel bundles. Mixed carbide fuel for FBTR was first fabricated by Bhabha Atomic Research Centre (BARC) in 1979.

Heavy water is supplied by DAE's Heavy Water Board, and the seven plants are working at capacity due to the current building program.

A very small centrifuge enrichment plant - insufficient even for the Tarapur reactors - is operated by DAE's Rare Materials Plant at Ratnahalli near Mysore, primarily for military purposes including submarine fuel, but also supplying research reactors. It started up about 1990 and appears that it is being expanded to some 25,000 SWU/yr. Some centrifuge R&D is undertaken by BARC at Tromaby.

Fuel fabrication is by the Nuclear Fuel Complex in Hyderabad, which is setting up a new 500 t/yr PHWR fuel plant at Rawatbhata in Rajasthan, to serve the larger new reactors. Each 700 MWe reactor is said to need 125 t/yr of fuel. The company is proposing joint ventures with US, French and Russian companies to produce fuel for those reactors.

Reprocessing: Used fuel from the civil PHWRs is reprocessed by Bhabha Atomic Research Centre (BARC) at Trombay, Tarapur and Kalpakkam to extract reactor-grade plutonium for use in the fast breeder reactors. Small plants at each site were supplemented by a new Kalpakkam plant of some 100 t/yr commissioned in 1998, and this is being extended to reprocess FBTR carbide fuel. Apart from this all reprocessing uses the Purex process. Further capacity is being built at Tarapur and Kalpakkam, to come on line by about 2010. India will reprocess the used fuel from the Kudankulam reactors and will keep the plutonium.

In 2003 a facility was commissioned at Kalpakkam to reprocess mixed carbide fuel using an advanced Purex process. Future FBRs will also have these facilities co-located.

The PFBR and the next four FBRs to be commissioned by 2020 will use oxide fuel. After that it is expected that metal fuel with higher breeding capability will be introduced and burn-up is intended to increase from 100 to 200 GWd/t.

To close the FBR fuel cycle a fast reactor fuel cycle facility is planned, with construction to begin in 2008 and operation to coincide with the need to reprocess the first PFBR fuel. In 2010 the AEC said that used mixed carbide fuel from the Fast Breeder Test Reactor (FBTR) with a burn-up of 155 GWd/t was reprocessed in the Compact Reprocessing facility for Advanced fuels in Lead cells (CORAL). Thereafter, the fissile material was re-fabricated as fuel and loaded back into the reactor, thus 'closing' the fast reactor fuel cycle.

In April 2010 it was announced that 18 months of negotiations with the USA had resulted in agreement to build two new reprocessing plants to be under IAEA safeguards, likely located near Kalpakkam and near Mumbai - possibly Trombay. In July 2010 an agreement was signed with the USA to allow reprocessing of US-origin fuel at one of these facilities. Later in 2010 the AEC said that India has commenced engineering activities for setting up of an Integrated Nuclear Recycle Plant with facilities for both reprocessing of spent fuel and waste management.

Under plans for the India-specific safeguards to be administered by the IAEA in relation to the civil-military separation plan several fuel fabrication facilities will come under safeguards.

Thorium fuel cycle development in India

The long-term goal of India's nuclear program has been to develop an advanced heavy-water thorium cycle.The first stage of this employs the PHWRs fuelled by natural uranium, and light water reactors, to produce plutonium.

Stage 2 uses fast neutron reactors burning the plutonium to breed U-233 from thorium. The blanket around the core will have uranium as well as thorium, so that further plutonium (ideally high-fissile Pu) is produced as well as the U-233.

Then in stage 3, Advanced Heavy Water Reactors (AHWRs) burn the U-233 from stage 2 and this plutonium with thorium, getting about two thirds of their power from the thorium.

In 2002 the regulatory authority issued approval to start construction of a 500 MWe prototype fast breeder reactor at Kalpakkam and this is now under construction by BHAVINI. The unit is expected to be operating in 2011, fuelled with uranium-plutonium oxide (the reactor-grade Pu being from its existing PHWRs). It will have a blanket with thorium and uranium to breed fissile U-233 and plutonium respectively. This will take India's ambitious thorium program to stage 2, and set the scene for eventual full utilisation of the country's abundant thorium to fuel reactors. Six more such 500 MWe fast reactors have been announced for construction, four of them by 2020.

So far about one tonne of thorium oxide fuel has been irradiated experimentally in PHWR reactors and has reprocessed and some of this has been reprocessed, according to BARC. A reprocessing centre for thorium fuels is being set up at Kalpakkam.

Design is largely complete for the first 300 MWe AHWR, intended to be built in the 11th plan period to 2012, though no site has yet been announced. It will have vertical pressure tubes in which the light water coolant under high pressure will boil, circulation being by convection. A large heat sink - "Gravity-driven water pool" - with 7000 cubic metres of water is near the top of the reactor building. In April 2008 an AHWR critical facility was commissioned at BARC “to conduct a wide range of experiments, to help validate the reactor physics of the AHWR through computer codes and in generating nuclear data about materials, such as thorium-uranium 233 based fuel, which have not been extensively used in the past.” It has all the components of the AHWR’s core including fuel and moderator, and can be operated in different modes with various kinds of fuel in different configurations.

In 2009 the AEC announced some features of the 300 MWe AHWR: It is mainly a thorium-fuelled reactor with several advanced passive safety features to enable meeting next-generation safety requirements such as three days grace period for operator response, elimination of the need for exclusion zone beyond the plant boundary, 100-year design life, and high level of fault tolerance. The advanced safety characteristics have been verified in a series of experiments carried out in full-scale test facilities. Also, per unit of energy produced, the amount of long-lived minor actinides generated is nearly half of that produced in current generation Light Water Reactors. Importantly, a high level of radioactivity in the fissile and fertile materials recovered from the used fuel of AHWR, and their isotopic composition, preclude the use of these materials for nuclear weapons. In mid 2010 a pre-licensing safety appraisal had been completed by the AERB and site selection was in progress. The AHWR can be configured to accept a range of fuel types including enriched U, U-Pu MOX, Th-Pu MOX, and U-233-Th MOX in full core.

At the same time the AEC announced an LEU version of the AHWR. This will use low-enriched uranium plus thorium as a fuel, dispensing with the plutonium input. About 39% of the power will come from thorium (via in situ conversion to U-233, cf two thirds in AHWR), and burn-up will be 64 GWd/t. Uranium enrichment level will be 19.75%, giving 4.21% average fissile content of the U-Th fuel. While designed for closed fuel cycle, this is not required. Plutonium production will be less than in light water reactors, and the fissile proportion will be less and the Pu-238 portion three times as high, giving inherent proliferation resistance. The design is intended for overseas sales, and the AEC says that "the reactor is manageable with modest industrial infrastructure within the reach of developing countries".

Radioactive Waste Management in India

Radioactive wastes from the nuclear reactors and reprocessing plants are treated and stored at each site. Waste immobilisation plants are in operation at Tarapur and Trombay and another is being constructed at Kalpakkam. Research on final disposal of high-level and long-lived wastes in a geological repository is in progress at BARC.

Regulation and safety

The Atomic Energy Commission (AEC) was established in 1948 under the Atomic Energy Act as a policy body. Then in 1954 the Department of Atomic Energy (DAE) was set up to encompass research, technology development and commercial reactor operation. The current Atomic Energy Act is 1962, and it permits only government-owned enterprises to be involved in nuclear power.

The DAE includes NPCIL, Uranium Corporation of India (mining and processing), Electronics Corporation of India Ltd (reactor control and instrumentation) and BHAVIN* (for setting up fast reactors). The government also controls the Heavy Water Board for production of heavy water and the Nuclear Fuel Complex for fuel and component manufacture.

* Bhartiya Nabhikiya Vidyut Nigam Ltd

The Atomic Energy Regulatory Board (AERB) was formed in 1983 and comes under the AEC but is independent of DAE. It is responsible for the regulation and licensing of all nuclear facilities, and their safety and carries authority conferred by the Atomic Energy Act for radiation safety and by the Factories Act for industrial safety in nuclear plants.

NPCIL is an active participant in the programmes of the World Association of Nuclear Operators (WANO).

Nuclear liability

India's 1962 Atomic Energy Act says nothing about liability or compensation in the event of an accident. Also, India is not a party to the relevant international nuclear liability conventions (the IAEA's 1997 Amended Vienna Convention and 1997 Convention on Supplementary Compensation for Nuclear Damage - CSC). Since all civil nuclear facilities are owned and must be majority-owned by the Central Government (NPCIL and BHAVNI, both public sector enterprises), the liability issues arising from these installations are its responsibility. On 10 September 2008 the government assured the USA that India "shall take all steps necessary to adhere to the Convention on Supplementary Compensation (CSC)". Under existing Indian legislation, foreign suppliers may face unlimited liability, which prevents them from taking insurance cover, though contracts for Kudankulam 1&2 exclude this supplier liability.

A bill related to third party liability has been passed by both houses of parliament. This is framed and was debated in the context of strong national awareness of the Bhopal disaster in 1984, probably the world's worst industrial accident. A Union Carbide (51% US-owned) chemical plant in the central Madhya Pradesh state released a deadly mix of methyl isocyanate and other gases due to operator error and poor plant design, killing some 15,000 people and badly affecting some 100,000 others. The company paid out some US$ 1 billion in compensation - widely considered inadequate.

The new bill places responsibility for any nuclear accident with the operator, as is standard internationally, and limits total liability to 300 million SDR (about US$ 450 million) "or such higher amount that the Central Government may specify by notification". Operator liability is capped at Rs 1500 crore (about US$ 330 million) or such higher amount that the Central Government may notify, beyond which the Central Government is liable.

However, after compensation has been paid by the operator (or its insurers), the bill allows the operator to have legal recourse to the supplier for up to 80 years after the plant starts up if the "nuclear incident has resulted as a consequence of an act of supplier or his employee, which includes supply of equipment or material with patent or latent defects of (or?) sub-standard services." This clause giving recourse to the supplier for an operational plant is contrary to international conventions.

At the same time it is reported that negotiations with Russia for additional nuclear reactors at Kudankulam are held up because of this sub-clause, in this case involving Atomstroyexport. The original Kudankulam agreement said that supplier liability ended with delivery of the plant. US diplomatic sources are similarly opposed to supplier liability after delivery.

The bill does not make any mention of India ratifying the Convention on Supplementary Compensation for Nuclear Damage (CSC), and any international treaty or framework governing nuclear liability under which the supplier cannot be sued in their home country. The CSC is not yet in force internationally, but Indian ratification would bring it closer to being so, and was part of the September 2008 agreement with USA. In October 2010 India signed the CSC.

In October 2010 it was reported that NPCIL proposed to set up a fund of Rs 1500 crore ($336 million) for nuclear liability "with the Centre addressing anything over this level".

Research & Development

An early AEC decision was to set up the Bhabha Atomic Research Centre (BARC) at Trombay near Mumbai. A series of 'research' reactors and critical facilities was built here: APSARA (1 MW, operating from 1956) was the first research reactor in Asia, Cirus (40 MW, 1960) and Dhruva (100 MW, 1985) followed it along with fuel cycle facilities. The Cirus and Dhruva units are assumed to be for military purposes, as is the plutonium plant commissioned in 1965. The government has undertaken to shut down CIRUS in 2010.

BARC is also responsible for the transition to thorium-based systems and in particular is developing the 300 MWe AHWR as a technology demonstration project. This will be a vertical pressure tube design with heavy water moderator, boiling light water cooling with passive safety design and thorium-plutonium based fuel (described more fully above). A large critical facility to validate the reactor physics of the AHWR core has been commissioned at BARC, and by the end of 2010 BARC plans to set up a research laboratory at Tarapur to test various AHWR systems.

A series of three Purnima research reactors have explored the thorium cycle, the first (1971) running on plutonium fuel fabricated at BARC, the second and third (1984 & 1990) on U-233 fuel made from thorium - U-233 having been first separated in 1970. All three are now decommissioned.

In 1998 a 500 keV accelerator was commissioned at BARC for research on accelerator-driven subcritical systems (ADS) as an option for stage three of the thorium cycle.

There are plans for a new 20-30 MWt multi-purpose research reactor (MPRR) for radioisotope production, testing nuclear fuel and reactor materials, and basic research. It will use fuel enriched to 19.9% U-235 and is to be capable of conversion to an accelerator-driven system later.

Design studies are proceeding for a 200 MWe PHWR accelerator-driven system (ADS) fuelled by natural uranium and thorium. Uranium fuel bundles would be changed after about 7 GWd/t burn-up, but thorium bundles would stay longer, with the U-233 formed adding reactivity. This would be compensated for by progressively replacing some uranium with thorium, so that ultimately there is a fully-thorium core with in situ breeding and burning of thorium. This is expected to mean that the reactor needs only 140 tU through its life and achieves a high burnup of thorium - about 100 GWd/t. The disadvantage is that a 30 MW accelerator is required to run it.

Two civil research reactors at the Indira Gandhi Centre for Atomic Research at Kalpakkam are preparing for stage two of the thorium cycle. The 40 MWt fast breeder test reactor (FBTR) has been operating since 1985, and has achieved 165 GWday/tonne burnup with its carbide fuel (70% PuC + 30% UC) without any fuel failure. In 2005 the FBTR fuel cycle was closed, with the reprocessing of 100 GWd/t fuel - claimed as a world first. This has been made into new mixed carbide fuel for FBTR. Prototype FBR fuel which is under irradiation testing in FBTR has reached a burnup of 90 GWd/tonne. FBTR is based on the French Rapsodie FBR design. Also the tiny Kamini (Kalpakkam mini) reactor is exploring the use of thorium as nuclear fuel, by breeding fissile U-233. BHAVINI is located here and draws upon the centre's expertise and that of NPCIL in establishing the fast reactor program.

As part of developing higher-burnup fuel for PHWRs mixed oxide (MOX) fuel is being used experimentally in FBTR, which is now operating with a hybrid core of mixed carbide and mixed oxide fuel (the high-Pu MOX forming 20% of the core).

A 150 MWe fast breeder reactor as a test bed for using metallic fuel is envisaged once several MOX-fuelled fast reactors are in operation.

A Compact High-Temperature Reactor (CHTR) is being designed to have long (15 year) core life and employ liquid metal (Pb-Bi) coolant. There are also designs for HTRs up to 600 MWt for hydrogen production and a 5 MWt multi-purpose nuclear power pack.

The Board of Radiation & Isotope Technology was separated from BARC in 1989 and is responsible for radioisotope production. The research reactors APSARA, CIRUS and Dhruva are used, along with RAPS for cobalt-60.

BARC has used nuclear techniques to develop 37 genetically-modified crop varieties for commercial cultivation. A total of 15 sterilising facilities, particularly for preserving food, are now operational with more under construction. Radiation technology has also helped India increase its exports of food items, including to the most developed markets in the world.

India's hybrid Nuclear Desalination Demonstration Plant (NDDP) at Kalpakkam, comprises a Reverse Osmosis (RO) unit of 1.8 million litres per day commissioned in 2002 and a Multi Stage Flash (MSF) desalination unit of 4.5 million litres per day, as well as a barge-mounted RO unit commissioned recently, to help address the shortage of water in water-stressed coastal areas. It uses about 4 MWe from the Madras nuclear power station.

Non-proliferation, US-India agreement and Nuclear Suppliers' Group

India's nuclear industry has been largely without IAEA safeguards, though four nuclear power plants (see above) have been under facility-specific arrangements related to India's INFCIRC/66 safeguards agreement with IAEA. However, in October 2009 India's safeguards agreement with the IAEA became operational, with the government confirming that 14 reactor will be put under the India Specific Safeguards Agreement by 2014.

India's situation as a nuclear-armed country excluded it from the Nuclear Non-Proliferation Treaty (NPT)* so this and the related lack of full-scope IAEA safeguards meant that India was isolated from world trade by the Nuclear Suppliers' Group. A clean waiver to the trade embargo was agreed in September 2008 in recognition of the country's impeccable non-proliferation credentials. India has always been scrupulous in ensuring that its weapons material and technology are guarded against commercial or illicit export to other countries.
* India could only join the NPT if it disarmed and joined as a Non Nuclear Weapons State, which is politically impossible. See Appendix.

Following the 2005 agreement between US and Indian heads of state on nuclear energy cooperation, the UK indicated its strong support for greater cooperation and France then Canada then moved in the same direction. The US Department of Commerce, the UK and Canada relaxed controls on export of technology to India, though staying within the Nuclear Suppliers Group guidelines. The French government said it would seek a nuclear cooperation agreement, and Canada agreed to "pursue further opportunities for the development of the peaceful uses of atomic energy" with India.

In December 2006 the US Congress passed legislation to enable nuclear trade with India. Then in July 2007 a nuclear cooperation agreement with India was finalized, opening the way for India's participation in international commerce in nuclear fuel and equipment and requiring India to put most of the country's nuclear power reactors under IAEA safeguards and close down the CIRUS research reactor at the end of 2010. It would allow India to reprocess US-origin and other foreign-sourced nuclear fuel at a new national plant under IAEA safeguards. This would be used for fuel arising from those 14 reactors designated as unambiguously civilian and under full IAEA safeguards.

The IAEA greeted the deal as being "a creative break with the past" - where India was excluded from the NPT. After much delay in India's parliament, it then set up a new and comprehensive safeguards agreement with the IAEA, plus an Additional Protocol. The IAEA board approved this in July 2008, after the agreement had threatened to bring down the Indian government. The agreement is similar to those between IAEA and non nuclear weapons states, notably Infcirc-66, the IAEA's information circular that lays out procedures for applying facility-specific safeguards, hence much more restrictive than many in India's parliament wanted.

The next step in bringing India into the fold was the consensus resolution of the 45-member Nuclear Suppliers Group (NSG) in September 2008 to exempt India from its rule of prohibiting trade with non-members of the NPT. A bilateral trade agreement then went to US Congress for final approval, and was signed into law on 8 October 2008. Similar agreements will apply with Russia and France. The ultimate objective is to put India on the same footing as China in respect to responsibilities and trade opportunities, though it has had to accept much tighter international controls than other nuclear-armed countries.

The introduction to India's safeguards agreement says that India's access to assured supplies of fresh fuel is an "essential basis" for New Delhi's acceptance of IAEA safeguards on some of its reactors and that India has a right to take "corrective measures to ensure uninterrupted operation of its civilian nuclear reactors in the event of disruption of foreign fuel supplies." But the introduction also says that India will "provide assurance against withdrawal of safeguarded nuclear material from civilian use at any time." In the course of NSG deliberations India also gave assurances regarding weapons testing.

In October 2008 US Congress passed the bill allowing civil nuclear trade with India, and a nuclear trade agreement was signed with France. The 2008 agreements ended 34 years of trade isolation in relation to nuclear materials and technology.

India's safeguards agreement was signed early in 2009, though the timeframe for bringing the eight extra reactors (beyond Tarapur, Rajasthan and Kudankulam) under safeguards still has to be finalised. The Additional Protocol to the safeguards agreement was agreed by the IAEA Board in March 2009, but needs to be ratified by India.


Appendix

BACKGROUND TO NUCLEAR PROLIFERATION ISSUES

India (along with Pakistan and Israel) was originally a 'threshold' country in terms of the international non-proliferation regime, possessing, or quickly capable of assembling one or more nuclear weapons: Their nuclear weapons capability at the technological level was recognised (all have research reactors at least) along with their military ambitions. Then in 1998 India and Pakistan's military capability became more overt. All three remained remained outside the 1970 Nuclear Non-Proliferation Treaty (NPT), which 186 nations have now signed. This led to their being largely excluded from trade in nuclear plant or materials, except for safety-related devices for a few safeguarded facilities.

India is opposed to the NPT as it now stands, since it is excluded as a Nuclear Weapons State, and has consistently criticised this aspect of the Treaty since its inception in 1970.

Regional rivalry

Relations between India and Pakistan are tense and hostile, and the risks of nuclear conflict between them have long been considered quite high.

In 1974 India exploded a "peaceful" nuclear device at Pokhran and then in May 1998 India and Pakistan each exploded several nuclear devices underground. This heightened concerns regarding an arms race between them.

Kashmir is a prime cause of bilateral tension, its sovereignty has been in dispute since 1948. There is persistent low level military conflict due to Pakistan backing a Muslim rebellion there.

Both countries engaged in a conventional arms race in the 1980s, including sophisticated technology and equipment capable of delivering nuclear weapons. In the 1990s the arms race quickened. In 1994 India reversed a four-year trend of reduced allocations for defence, and despite its much smaller economy, Pakistan pushed its own expenditures yet higher. Both then lost their patrons: India, the former USSR; and Pakistan, the USA.

In 1997 India deployed a medium-range missile and is now developing a long-range missile capable of reaching targets in China's industrial heartland.

In 1995 the USA quietly intervened to head off a proposed nuclear test. The 1998 tests were unambiguously military, including one claimed to be of a sophisticated thermonuclear device. Their declared purpose was "to help in the design of nuclear weapons of different yields and different delivery systems".

It is the growth and modernisation of China's nuclear arsenal and its assistance with Pakistan's nuclear power program and, reportedly, with missile technology, which now exacerbates Indian concerns. In particular, China's People's Liberation Army operates somewhat autonomously within Pakistan as an exporter of military material.

Indian security policies are driven by:

its desire to be recognised as the dominant power in the region;
its increasing concern with China's expanding nuclear weapons and missile delivery programs; and
its enduring concern about Pakistan, with its nuclear weapons capability and now the clear capability to deliver such weapons deep into India.
It perceives nuclear weapons as a cost-effective political counter to China's nuclear and conventional weaponry, and the effects of its nuclear weapons policy in provoking Pakistan is, by some accounts, considered incidental.

India has had an unhappy relationship with China. Soundly defeated by China in the 1962 war, relations were frozen until 1998. Since then a degree of high-level contact has been established and a few elementary confidence-building measures put in place. China still occupies some Indian territory. Its nuclear and missile support for Pakistan is however a major bone of contention.

India's weapons material initially came from the Canadian-designed 40 MWt CIRUS "research" reactor which started up in 1960 (well before the NPT), and the 100 MWt Dhruva indigenous unit in operation since 1985, using local uranium. CIRUS was supplied with heavy water from the USA and it was probably only after the 1962 war that it was employed largely to make weapons-grade plutonium.* Development of nuclear weapons apparently began in earnest in 1967. It is estimated that India may have built up enough weapons-grade plutonium for one hundred nuclear warheads.
* Article III of the 1956 India-Canada Agreement: The Government of India will ensure that the reactor and any products resulting from its use will be employed for peaceful purposes only. Clause 9 of the India-US Heavy Water Agreement: The heavy water sold here under shall be for use only in India by the Government in connection with research into and the use atomic energy for peaceful purposes.

In response to India's 1974 nuclear test explosion using plutonium from CIRUS, demonstrating that nuclear technology transferred to non-nuclear-weapons states for peaceful purposes could be misused, the Nuclear Suppliers Group was formed and began regulating nuclear trade, particularly with India. This is one reason why the closure of CIRUS is a condition of the NSG waiver in 2008.

Nuclear arms control in the region

The public stance of India and Pakistan on non-proliferation differs markedly.

Pakistan has initiated a series of regional security proposals. It has repeatedly proposed a nuclear-free zone in South Asia and has proclaimed its willingness to engage in nuclear disarmament and to sign the NPT if India would do so. This would involve disarming and joining as non-weapon states. It has endorsed a US proposal for a regional five power conference to consider non-proliferation in South Asia.

India has taken the view that solutions to regional security issues should be found at the international rather than the regional level, since its chief concern is with China. It therefore rejects Pakistan's proposals.

Instead, the 'Gandhi Plan', put forward in 1988, proposed the revision of the NPT, which it regards as inherently discriminatory in favour of the Nuclear-Weapons States, and a timetable for complete nuclear weapons disarmament. It endorsed early proposals for a Comprehensive Test Ban Treaty (CTBT) and for an international convention to ban the production of highly enriched uranium and plutonium for weapons purposes, known as the 'cut-off' convention.

The USA has, for some years pursued a variety of initiatives to persuade India and Pakistan to abandon their nuclear weapons programs and to accept comprehensive international safeguards on all their nuclear activities. To this end the Clinton administration proposed a conference of nine states, comprising the five established nuclear-weapon states, along with Japan, Germany, India and Pakistan.

This and previous similar proposals have been rejected by India, which countered with demands that other potential weapons states, such as Iran and North Korea, should be invited, and that regional limitations would only be acceptable if they were accepted equally by China. The USA would not accept the participation of Iran and North Korea and such initiatives lapsed.

Another, more recent approach, centres on the concept of containment, designed to 'cap' the production of fissile material for weapons purposes, which would hopefully be followed by 'roll back'. To this end India and the USA jointly sponsored a UN General Assembly resolution in 1993 calling for negotiations for a 'cut-off' convention, the Fissile Material Cut-off Treaty (FMCT). Should India and Pakistan join such a convention, they would have to agree to halt the production of fissile materials for weapons and to accept international verification on their relevant nuclear facilities (enrichment and reprocessing). In short, their weapons programs would be thus 'capped'. It appeared that India was prepared to join negotiations regarding such a FMCT under the 1995 UN Conference on Disarmament (UNCD).

However, despite the widespread international support for a FMCT, formal negotiations on cut-off have yet to begin. The UNCD can only approve decisions by consensus and since the summer of 1995, the insistence of a few states to link FMCT negotiations to other nuclear disarmament issues has brought progress on the cut-off treaty there to a standstill. In connection with its 2006 agreement with the USA, India has reiterated its support for a FMCT.

Bilateral confidence-building measures between India and Pakistan to reduce the prospects of confrontation have been limited. In 1990 each side ratified a treaty not to attack the other's nuclear installations, and at the end of 1991 they provided one another with a list showing the location of all their nuclear plants, even though the respective lists were regarded as not being wholly accurate. Early in 1994 India proposed a bilateral agreement for a 'no first use' of nuclear weapons and an extension of the 'no attack' treaty to cover civilian and industrial targets as well as nuclear installations.

Having promoted the CTBT since 1954, India dropped its support in 1995 and in 1996 attempted to block the Treaty. Following the 1998 tests the question has been reopened and both Pakistan and India have indicated their intention to sign the CTBT. Indian ratification may be conditional upon the five weapons states agreeing to specific reductions in nuclear arsenals.
 
. . . .

Pakistan Defence Latest Posts

Back
Top Bottom