Aitzaz Rai
FULL MEMBER
New Recruit
- Joined
- Feb 6, 2015
- Messages
- 27
- Reaction score
- 0
- Country
- Location
Rapid, precise explosives identification is one of the central tasks for homeland security and public safety personnel, particularly with the recent proliferation of improvised explosive devices (IEDs). Instruments that can be used in the field to rapidly and accurately identify various explosives and their precursors are essential tools for first responders.
Explosives ordnance disposal (EOD) specialists, bomb technicians, forensic scientists, hazardous material (HazMat) technicians, and first responders working in the realm of CBRNE (chemical, biological, radiological, nuclear, and explosives) meet a broad set of challenges in the course of their missions, and consequently require a broad set of tools to assist them in the completion of their duties. Two especially useful technologies in the battle against improvised explosive devices (IEDs) are Raman spectroscopy and Fourier transform–infrared spectroscopy (FT-IR). Recent advances in miniaturization, optical technologies, software development, and packaging have changed the landscape of laboratory-quality analytical devices for explosive identification and put the knowledge — and the instruments — literally in the hands of the first responder who needs them most.
Tools in the Fight Against Improvised Explosive Devices
IEDs are gaining traction as the weapon of choice for many terrorist organizations worldwide, due in part to the relative ease of production and widespread availability of raw materials. Bombings were responsible for more than half the fatalities and 85% of terrorism-related injuries in 2006 alone. The United States Department of Defense (DoD) spent nearly $4.0 billion in 2008 for the development and fielding of measures to defeat IEDs.
A key strategy to stop IED production is to locate the toxic industrial chemicals (TICs) and toxic industrial materials (TIMs) that serve as precursors as they are transported through checkpoints. TICs and TIMs are common industrial products that can be mixed, dissolved, blended, or disguised to obscure their true identity. IEDs are not fueled by traditional familiar explosive materials such as TNT, but are made in crude chemical laboratories using industrial chemicals and common household items. One method to stop the trafficking of these precursor materials is to use handheld chemical identification instrumentation in the field at checkpoints and borders. Security coalition partners and law enforcement personnel have demanded accurate, rugged, and portable tools to aid them in the fight against the growing global IED threat.
Safety and security personnel with a need for field-deployable analytical instruments include the military and civilian first responders responsible for evaluating and countering chemical, natural, and biological threats. These individuals work for U.S. and foreign government agencies as well as state and local agencies, such as fire departments, law enforcement agencies, and forensic laboratories.
Coalition partners and civilian agencies are working quickly to develop systems to counter the IED threat, equipping the first responders with the right tools to protect themselves and the community. This includes new detection technologies, training, and forensics to quickly identify the threat, find illicit labs, and disable insurgents' capabilities.
In the safety and security market, a fundamental need exists for analytical instruments that can identify unknown chemical substances quickly and precisely at the point of use so that the appropriate course of action can be taken. For these applications, response time and accuracy are critical to save lives, prevent major economic and public disruptions, and aid in resolving emergencies. Instruments located at remote laboratories, while accurate, do not adequately meet the need for a timely response. Portable instruments are sought after to quickly verify the contents of tankers, drums, bags, and bottles at checkpoints
Explosives ordnance disposal (EOD) specialists, bomb technicians, forensic scientists, hazardous material (HazMat) technicians, and first responders working in the realm of CBRNE (chemical, biological, radiological, nuclear, and explosives) meet a broad set of challenges in the course of their missions, and consequently require a broad set of tools to assist them in the completion of their duties. Two especially useful technologies in the battle against improvised explosive devices (IEDs) are Raman spectroscopy and Fourier transform–infrared spectroscopy (FT-IR). Recent advances in miniaturization, optical technologies, software development, and packaging have changed the landscape of laboratory-quality analytical devices for explosive identification and put the knowledge — and the instruments — literally in the hands of the first responder who needs them most.
Tools in the Fight Against Improvised Explosive Devices
IEDs are gaining traction as the weapon of choice for many terrorist organizations worldwide, due in part to the relative ease of production and widespread availability of raw materials. Bombings were responsible for more than half the fatalities and 85% of terrorism-related injuries in 2006 alone. The United States Department of Defense (DoD) spent nearly $4.0 billion in 2008 for the development and fielding of measures to defeat IEDs.
A key strategy to stop IED production is to locate the toxic industrial chemicals (TICs) and toxic industrial materials (TIMs) that serve as precursors as they are transported through checkpoints. TICs and TIMs are common industrial products that can be mixed, dissolved, blended, or disguised to obscure their true identity. IEDs are not fueled by traditional familiar explosive materials such as TNT, but are made in crude chemical laboratories using industrial chemicals and common household items. One method to stop the trafficking of these precursor materials is to use handheld chemical identification instrumentation in the field at checkpoints and borders. Security coalition partners and law enforcement personnel have demanded accurate, rugged, and portable tools to aid them in the fight against the growing global IED threat.
Safety and security personnel with a need for field-deployable analytical instruments include the military and civilian first responders responsible for evaluating and countering chemical, natural, and biological threats. These individuals work for U.S. and foreign government agencies as well as state and local agencies, such as fire departments, law enforcement agencies, and forensic laboratories.
Coalition partners and civilian agencies are working quickly to develop systems to counter the IED threat, equipping the first responders with the right tools to protect themselves and the community. This includes new detection technologies, training, and forensics to quickly identify the threat, find illicit labs, and disable insurgents' capabilities.
In the safety and security market, a fundamental need exists for analytical instruments that can identify unknown chemical substances quickly and precisely at the point of use so that the appropriate course of action can be taken. For these applications, response time and accuracy are critical to save lives, prevent major economic and public disruptions, and aid in resolving emergencies. Instruments located at remote laboratories, while accurate, do not adequately meet the need for a timely response. Portable instruments are sought after to quickly verify the contents of tankers, drums, bags, and bottles at checkpoints