India's space program takes a hit
By Peter J Brown
In mid-April, the Indian Space Research Organization (ISRO) tested a large, multi-stage rocket which was equipped with a new cryogenic engine that had been designed and developed by Indian engineers.
Roughly five minutes into this third development flight, the Geosynchronous Satellite Launch Vehicle (GSLV-D3) suffered a third-stage ignition failure and as a result of the malfunctioning launch vehicle, the GSAT-4 communications and navigation satellite on board was lost.
ISRO could do not dismiss or evade the media onslaught that ensued.
"After the unsuccessful flight, the ISRO chairman, K Radhakrishnan, initially suggested that two small cryogenic steering engines, which swivel to maintain the rocket's orientation, might have malfunctioned. Later, however, he indicated that the main cryogenic engine itself might not have ignited. In such a complex system as the cryogenic stage, even a small defect that escapes attention is sufficient to doom the flight," The Hindu declared on its editorial page, for example. "But the space agency would be unwise to confine its analysis to problems encountered with the indigenous cryogenic stage. This is an opportunity for a thorough examination of the entire GSLV rocket and its past five flights. There have, for instance, been problems with the Vikas liquid-propellant engine in previous flights. The procedures for the manufacture, assembly, and pre-flight testing of all liquid propellant engines and stages need particular attention. A comprehensive review would best ensure the future reliability of the GSLV." (1)
Over the last two to three years, the total space budget allocated to India's Department of Space has been growing at a rate greater than any of the other major space faring countries. The latest increase from 2009 to 2010 was approximately 35% - from 41.67 billion Indian rupees (US$934 million) to 57.78 billion rupees this year, just over $1.1 Billion. (2) While this huge spike in funding seems impressive on a percentage basis, it is worth noting that the US National Aeronautic and Space Administration's budget, for example, exceeds $18 Billion in 2010.
Still, this budgetary surge translates quickly into political pressure from Delhi to perform flawlessly, and certainly does not make this latest incident any easier to digest at ISRO headquarters.
The GSLV-D3 was launched from ISRO's Satish Dhawan Space Center, which occupies an island located off India's spectacular southeast coast in Andhra Pradesh.
The exact cause of the failure is still unknown. ISRO has spent years, indeed decades, working on cryogenic rocket technology in an attempt to match the satellite launch capabilities of top-tier space faring nations. The Europeans, Russians, Japanese, Chinese and the Americans have all successfully incorporated this technology into their space programs. In 2011, if everything proceeds on schedule, ISRO will attempt another cryogenic engine-propelled flight test.
Russia has supplied India with these cryogenic engines in the past and the next two GSLV flights will use these Russian-built engines, but ISRO considers mastery of this cryogenic technology, which involves super-cooled propellants, as extremely vital to ISRO's future plans to make very low-cost satellite launches a reality. ISRO has frequently declared that it is intent upon offering satellite launch services at bargain rates, but since its first successful launch of an Italian satellite in 2007, ISRO's campaign to become one of the world's top satellite launch service providers has progressed much more slowly than expected.
Antrix Corp Ltd - the commercial development arm of India's Department of Space - offers civilian launch services via both its existing GSLV and its Polar Satellite Launch Vehicle (PSLV). Antrix has already established an alliance with the European satellite consortium, EADS Astrium.
The PSLV is designed to launch payloads weighing up to 1.6 tons into so-called sun synchronous orbits, and it simply lacks the raw power or lift capacity necessary to carry typical communications satellites which can often weigh four tons or more deeper into space. This altitude is needed so these satellites can be stationed in their permanent orbital slots around the earth - 36,000 kilometers above the equator.
The same is basically true for the existing GSLV, which also is hindered by its carrying capacity. It can only accommodate satellites weighing 2.2 tons or less, which is why India is developing the GSLV-D3 and its successors to serve as India's heavyweight class of launch vehicles capable of lifting satellites and other payloads weighing four tons or more.
India's next launch attempt - a PSLV mission - was to take place in mid-May. However, in late April, ISRO postponed it and the new launch date has not been announced. The plan calls for PSLV-C15 to launch an Indian earth observation satellite named Cartosat-2B. Besides Cartosat-2B, an Algerian satellite known as Alsat, two Canadian tiny, so-called nano-satellites and a "Studsat" which is a one-kilogram satellite created by Indian university students, will make the trip, too.
Despite the GSLV-D3 loss, ISRO and Antrix remain active and seemingly unchanged by this experience. In order to accurately gauge how this incident has impacted ISRO, and to better assess ISRO's current overall status, Asia Times Online reached out to two experts on the Indian space program.
Professor Asif Siddiqi at Fordham University in New York is writing a book on the Indian space program. He is also one of the co-authors of "The Future of Human Spaceflight: Objectives and Policy Implications in a Global Context", which was produced last year as part of the American Academy of Arts and Sciences project entitled, "Reconsidering the Rules of Space".
Bharath Gopalaswamy, a researcher at the Stockholm International Peace Research Institute's Arms Control and Non-proliferation Program, specializes in space security with a principal focus on India's civilian and military space programs.
Siddiqi views the loss of the GSLV-D3 as clearly having a psychological impact on ISRO personnel.
"ISRO has been surging recently with very ambitious plans and expectations that called for some unrealistic schedules. The GSLV-D3 failure will curb some of the lofty rhetoric coming out of ISRO in recent years," said Siddiqi. "The failure of the cryogenic engine has a more direct impact on the payloads manifested for the GSLV in the near future as well, particularly the GSAT satellites."
It has been widely reported that ISRO is definitely disappointed and that this represents a setback. However, ISRO had a backup plan in place involving Russian cryogenic engines that were obtained long before the GSLV-D3 headed for its launch pad.
"The setback primarily is because if this launch had been successful, it would have enabled India to launch its own communication satellites, its first manned space flight (now scheduled for 2017) and the Chandrayaan 2 lunar probe in 2012," said Gopalaswamy. "The decision to revert back to using Russian boosters is a prudent one. India has two scheduled launches of GSLV for the fiscal year 2010-2011 and it is quite doubtful if the indigenous cryogenic engines would be ready by then. Hence, this has to be considered a prudent if not an inevitable decision."
Siddiqi describes cryogenic engines as "notoriously hard to troubleshoot and it may make sense for ISRO to invite Russian cooperation to investigate the failure".
"From what I have heard there are conflicting accounts of exactly what happened. If it is discovered that the main engine did not ignite at all as some reports suggest, this will be a big setback," said Siddiqi. "If the engine ignited even for one second as other reports suggest, this would be relatively speaking good news."
The fact that ISRO has taken nearly 20 years to develop its own indigenous cryogenic engine is not the issue here. Instead, the real issue is that all of the other nations who now possess this capability were able to attain this level of competence much quicker than ISRO.
"So, on the one hand, we should be impressed that ISRO has joined such a select club, but on the other hand, the long development time indicates a general trend in ISRO programs involving chronic delays," said Siddiqi.
That said, Siddiqi considers ISRO to be a relatively robust organization that has achieved most of the goals it has set out to achieve, although almost none of its goals have been achieved on time. This is neither unusual nor exceptional. Routine delays and constant rescheduling are common to most of the world's space programs.
"ISRO has mastered technological systems that put it on par with the 'second tier' states such as the European Space Agency and Japan and [with respect to remote sensing, for example] on par with the best in the world," said Siddiqi.
Amongst ISRO's main challenges right now is encouraging young and bright Indian engineers to join the space program.
"There is a fundamental shortage of qualified young blood and it remains to be seen how ISRO will meet the demands of the future given that most technically-minded Indians gravitate to the IT industry rather than to the space program," said Siddiqi. "The organizational culture of ISRO is set to a large degree by the ISRO chief. Given that the new ISRO chairman, Dr K Radhakrishnan, has been in his position for a very short time, it is not clear how his leadership and management abilities will affect ISRO. The GSLV-D3 failure will undoubtedly be a big test for him."
There has always been a degree of tension both horizontally
between the many different ISRO centers spread across India, and vertically, that is between ISRO headquarters and the Department of Space in Delhi and the directorate at each of these centers.
"Any friction between the different centers has been less prevalent since the 1990s," said Siddiqi.
One cannot rule out the possibility that quality control or "QC" played a role in this incident. It is an issue that is always lurking in the background whenever a spacecraft or rocket falters. The US in particular has been waging an unusually visible and uphill battle against sloppy "QC" for years, and may be finally seeing light at the end of the tunnel.
For example in February, Gary Payton, US Air Force deputy under secretary for space programs, used a session sponsored by the Space Foundation to once again call attention to what can result when testing is poorly executed and QC procedures break down. Whenever poor workmanship and spotty managerial oversight prevail, and if substandard and defective parts as well as error-riddled software code somehow find their way to the launch pad, the launch in question is probably doomed from the start. (3)
In other words, failure to discover problems prior to launch is a common source of headaches in the space realm.
"As far as quality control, of course, there will always be problems, but ISRO has done an admirable job of trying to limit quality control shortcomings. Their record with the PSLV as well as the recent success of the Chandrayaan mission was exemplary in this regard," said Siddiqi.
After all the bugs are worked out, Siddiqi is not convinced that the GSLV-D3 will magically provide ISRO with a major competitive advantage in the geostationary launch market.
"[ISRO] faces undeniably low launch rates and stiff competition from other launch vehicles such as [Russia's] Proton and [France's] Ariane which have a robust record," said Siddiqi. "India's one advantage, pricing, will be compromised by insurance premiums. The failure of the indigenous cryogenic version certainly will not help."
It is no surprise that Siddiqi describes the PSLV as India's best bet for a commercial launcher, but there is no escaping the fact that PSLV was never designed to compete with the much larger and more powerful Proton, Ariane, or China's Long March and the US's Atlas launch vehicles, to name just a few, which are used routinely.
Gopalaswamy agrees with ISRO's objectives here. Entry into the commercial satellite launch market poses a considerable challenge, because one major obstacle that hinders any steady progress by ISRO is the wall of restrictions that must be surmounted. This has been put in place by major players, particularly the US which tightly controls all satellite components and satellite exports for launch overseas.
"Antrix made initial forays by offering launch services in piggyback mode to Germany, Belgium, Argentina and Korea. In 2007, a full-fledged commercial launch was performed by PSLV by carrying an Italian astronomical satellite, AGILE. This was followed by the launch of Tec-SAR, an Israeli spy satellite in 2008," said Gopalaswamy. "So, I am not surprised at this objective of ISRO. However, there may be a point where an international dispute over launch pricing may arise. The nature of how and what that dispute is all about is something quite speculative at this stage."
Like the deep space probe projects, ISRO's manned program signals what Siddiqi describes as a "major shift" in ISRO's priorities away from those established in the late 1960s which were intended to shape ISRO into an enlightened spearhead for a global development drive using space technology.
"This shift occurred some time just after 2000. ISRO did not abandon that mandate but it took a very ambitious step in adding projects including deep space and manned missions that have little or nothing to do with development. Given India's growing economic and political clout on the global stage, we can expect that such programs which have no tangible or practical benefits, will continue to be funded," said Siddiqi. "From a purely practical perspective, the manned program seems unnecessary to ISRO's original mandate; it is clear that the manned program is not about the pursuit of scientific or technical knowledge or about alleviating poverty - it is first and foremost about prestige."
Mandates or not, India's Chandrayaan lunar program warrants closer scrutiny, according to Gopalaswamy.
"I am not sure if the cost benefits can be adequately justified - nor the strategic priorities in initiating such a program," said Gopalaswamy. "It is somewhat puzzling that a country that is unable to launch its own communication satellites initiates a program in the exploration of the moon."
Although ISRO's human spaceflight program might be considered a high-risk project, recent information seems to suggest that ISRO is taking a more gradual approach and spacing out the program even more. ISRO projects that its first manned flight will happen by 2017. Siddiqi describes ISRO's total projected $2.8 billion outlay for this manned spaceflight program as conservative.
"We may expect that either the program will remain at that funding level and increase the risk of accident, or funding will be increased in the next few years, more probably the latter," said Siddiqi.
Siddiqi remains concerned, however, that ISRO's commitment to a manned spaceflight project may eventually become a major drain on more conventional projects, and, that "those firmly pushing the manned program will have to be careful not to cut into established competences and priorities within ISRO".
"In terms of budget allocations, ISRO is achieving the right mix of funding for operational launch vehicles and satellites, new launch vehicles and satellites, infrastructure, and experimental technologies," said Siddiqi. "If I had a concern, it would be the manned space program. If not handled prudently, I see it potentially having long-range deleterious effects on other unrelated ISRO operations."
Peter J Brown is a satellite journalist from Maine USA.
(Copyright 2010 Asia Times Online (Holdings) Ltd. All rights reserved.)
Asia Times Online :: South Asia news, business and economy from India and Pakistan