What's new

Book Recommendation: Radar and Laser Cross Section Engineering, Second Edition

CriticalThought

SENIOR MEMBER
Joined
Oct 10, 2016
Messages
7,094
Reaction score
13
Country
Pakistan
Location
Australia
https://arc.aiaa.org/doi/book/10.2514/4.477027

Description
There have been many new developments since the first edition of Radar and Laser Cross Section Engineering was published. Stealth technology is now an important consideration in the design of all types of platforms. The second edition includes a more extensive introduction that covers the important aspects of stealth technology and the unique tradeoffs involved in stealth design. Prediction, reduction, and measurement of electromagnetic scattering from complex three-dimensional targets remains the primary emphasis of this text, developed by the author from courses taught at the Naval Postgraduate School. New topics on computational methods like the finite element method and the finite integration technique are covered, as well as new areas in the application of radar absorbing material and artificial metamaterials. MATLAB® software, homework problems, and a solution manual (available to instructors) supplement the text. Written as an instructional text, this book is recommended for upper-level undergraduate and graduate students. It is also a good reference book for engineers in the industry who want an introduction to the physics and mathematics of radar cross section in order to better understand the interdisciplinary aspects of stealth.

@The SC
 
. .
https://arc.aiaa.org/doi/book/10.2514/4.477027

Description
There have been many new developments since the first edition of Radar and Laser Cross Section Engineering was published. Stealth technology is now an important consideration in the design of all types of platforms. The second edition includes a more extensive introduction that covers the important aspects of stealth technology and the unique tradeoffs involved in stealth design. Prediction, reduction, and measurement of electromagnetic scattering from complex three-dimensional targets remains the primary emphasis of this text, developed by the author from courses taught at the Naval Postgraduate School. New topics on computational methods like the finite element method and the finite integration technique are covered, as well as new areas in the application of radar absorbing material and artificial metamaterials. MATLAB® software, homework problems, and a solution manual (available to instructors) supplement the text. Written as an instructional text, this book is recommended for upper-level undergraduate and graduate students. It is also a good reference book for engineers in the industry who want an introduction to the physics and mathematics of radar cross section in order to better understand the interdisciplinary aspects of stealth.

@The SC
This is quite an advanced sciences book, but this is just theory, it needs to be simulated on Matlab _which is open to almost everyone_, but the main tests are applied in $ R&D $ laboratories, and that is where the US leads.. one can add China too and some European countries.. Theory is important, and applying it is much more important, if one wants to benefit from its findings..

Table of contents for Radar and laser cross section engineering

Table of Contents
Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv
Abbreviations and Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix
Chapter 1. Radar Cross Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Radar Systems and the Radar Range Equation . . . . . . . . . . . . . . . 2
1.3 Polarization Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.4 Multipath and Other Environmental Effects . . . . . . . . . . . . . . . . 14
1.5 Radar Counter measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.6 General Characteristics of Radar Cross Sections . . . . . . . . . . . . . 21
1.7 Scattering Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.8 Methods of Radar Cross Section Prediction . . . . . . . . . . . . . . . . 28
1.9 Target Scattering Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Chapter 2. Basic Theorems, Concepts, and Methods . . . . . . . . . . . . . 39
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.2 Uniqueness Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.3 Reciprocity Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.4 Duality Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.5 Radiation Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.6 Superposition Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.7 Theorem of Similitude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.8 Method of Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.9 Equivalence Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.10 Physical Optics Approximation . . . . . . . . . . . . . . . . . . . . . . . . 51
2.11 Huygen's Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
2.12 Arrays of Scatterers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
2.13 Impedance Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . 69
2.14 Discontinuity Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . 76
2.15 Surface Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Chapter 3. Frequency-Domain Numerical Methods . . . . . . . . . . . . . . 97
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
3.2 Electric Field Integral Equation . . . . . . . . . . . . . . . . . . . . . . . . 98
3.3 Magnetic Field Integral Equation . . . . . . . . . . . . . . . . . . . . . . 101
3.4 The Vector Wave Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
3.5 Method of Moments Technique . . . . . . . . . . . . . . . . . . . . . . . 103
3.6 Method of Moments for Surfaces . . . . . . . . . . . . . . . . . . . . . . 112
3.7 Other Integral Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
3.8 Finite Element Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
Chapter 4. Time-Domain Numerical Methods . . . . . . . . . . . . . . . . . 149
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
4.2 Relationship Between Time and Frequency . . . . . . . . . . . . . . . 151
4.3 Finite Difference-Time-Domain Method . . . . . . . . . . . . . . . . . 154
4.4 Finite Difference-Time-Domain Equations in One Dimension . . 165
4.5 Finite Difference-Time-Domain Method in Two Dimensions . . . 188
4.6 Finite Difference-Time-Domain Method in Three Dimensions . . 205
4.7 Finite Integration Technique . . . . . . . . . . . . . . . . . . . . . . . . . . 208
4.8 The Transmission Line Matrix Method . . . . . . . . . . . . . . . . . . 212
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
Chapter 5. Microwave Optics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
5.2 Geometrical Optics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
5.3 Geometrical Theory of Diffraction . . . . . . . . . . . . . . . . . . . . . 231
5.4 Diffraction Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
5.5 Geometrical Theory of Diffraction Equivalent Currents . . . . . . . 241
5.6 Physical Theory of Diffraction . . . . . . . . . . . . . . . . . . . . . . . . 243
5.7 Incremental Length Diffraction Coefficients . . . . . . . . . . . . . . . 246
5.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
Chapter 6. Complex Targets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
6.2 Geometrical Components Method . . . . . . . . . . . . . . . . . . . . . . 258
6.3 Antenna Scattering Characteristics . . . . . . . . . . . . . . . . . . . . . 266
6.4 Basic Equation of Antenna Scattering . . . . . . . . . . . . . . . . . . . 268
6.5 Conjugate-Matched Antennas . . . . . . . . . . . . . . . . . . . . . . . . 271
6.6 Rigorous Solutions for Antenna Radar Cross Section . . . . . . . . . 272
6.7 Scattering from Antenna Feeds . . . . . . . . . . . . . . . . . . . . . . . . 277
6.8 Feed Scattering Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 289
6.9 Rigorous Calculation of Feed Radar Cross Section . . . . . . . . . . 296
6.10 Frequency Selective Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . 301
6.11 Cavities and Ducts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305
6.12 Error and Imperfections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
6.13 Random Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
6.14 Periodic Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
6.15 Miscellaneous Discontinuities . . . . . . . . . . . . . . . . . . . . . . . . 324
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328
Chapter 7. Radar Cross Section Reduction . . . . . . . . . . . . . . . . . . . 335
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335
7.2 Target Shaping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335
7.3 Materials Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338
7.4 RCS Reduction Techniques Employing Materials . . . . . . . . . . . 352
7.5 Composite and Artificial Materials . . . . . . . . . . . . . . . . . . . . . 357
7.6 Passive Cancellation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371
7.7 Active Cancellation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373
7.8 Treatments for Traveling Waves . . . . . . . . . . . . . . . . . . . . . . . 374
7.9 Antenna Radar Cross Section Reduction . . . . . . . . . . . . . . . . . 374
7.10 Cavity Cross Section Reduction . . . . . . . . . . . . . . . . . . . . . . . 377
7.11 Summary: Radar Cross Section Design Guidelines . . . . . . . . . . 378
7.12 Inverse Scattering and Radar Cross Section Synthesis . . . . . . . . 380
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388
Chapter 8. Measurement of Radar Cross Section . . . . . . . . . . . . . . . 397
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397
8.2 Chamber Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398
8.3 Sources of Measurement Error . . . . . . . . . . . . . . . . . . . . . . . . 403
8.4 Resolved Radar Cross Section and Target Imaging . . . . . . . . . . 404
8.5 Diagnostic Techniques for Maintenance . . . . . . . . . . . . . . . . . . 407
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408
Chapter 9. Laser Cross Section . . . . . . . . . . . . . . . . . . . . . . . . . . . 411
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411
9.2 Scattering and Propagation of Light . . . . . . . . . . . . . . . . . . . . 411
9.3 Definition of Quantities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413
9.4 Laser Radar Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416
9.5 Definition of Laser Cross Section . . . . . . . . . . . . . . . . . . . . . . 419
9.6 Bidirectional Reflectance Distribution Function . . . . . . . . . . . . 420
9.7 Diffuse Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423
9.8 Calculation of Laser Cross Section . . . . . . . . . . . . . . . . . . . . . 427
9.9 Multiple Reflections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 430
9.10 Laser Cross Section Reduction Methods . . . . . . . . . . . . . . . . . 433
9.11 Antireflection Films . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433
9.12 Laser Cross Section Prediction for Complex Targets . . . . . . . . . 436
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437
Appendix A. Notation, Definitions, and Review of Electromagnetics . . 441
A.1 Field Quantities and Constitutive Parameters . . . . . . . . . . . . . . 441
A.2 Maxwell's Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441
A.3 Current Densities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442
A.4 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443
A.5 Magnetic Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444
A.6 Types of Media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444
A.7 Wave Equation and Plane Waves . . . . . . . . . . . . . . . . . . . . . . . 445
A.8 Wave Polarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 446
A.9 Plane Waves in Lossy Media . . . . . . . . . . . . . . . . . . . . . . . . . 447
A.10 Group Velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449
A.11 Power Flow and the Poynting Vector . . . . . . . . . . . . . . . . . . . . 449
A.12 Reflection and Refraction at an Interface . . . . . . . . . . . . . . . . . 450
A.13 Total Reflection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 452
A.14 Standing Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453
Appendix B. Coordinate Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 455
B.1 Orthogonal Coordinate Systems . . . . . . . . . . . . . . . . . . . . . . . 455
B.2 Coordinate Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . 456
B.3 Position Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 458
B.4 Direction Cosines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 458
B.5 Azimuth-Elevation Coordinate System . . . . . . . . . . . . . . . . . . 460
Appendix C. Review of Antenna Theory . . . . . . . . . . . . . . . . . . . . . . 462
C.1 Antenna Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 462
C.2 Aperture Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 468
C.3 Array Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 470
Appendix D. Review of Transmission Lines . . . . . . . . . . . . . . . . . . . . 474
D.1 Waves on Transmission Lines . . . . . . . . . . . . . . . . . . . . . . . . . 474
D.2 Transmission Line Equivalent of Plane Wave Reflection . . . . . . . 475
D.3 Impedance Transformers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 476
Appendix E. Scattering Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 478
E.1 Scattering Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 478
E.2 Properties of the Scattering Matrix . . . . . . . . . . . . . . . . . . . . . 479
E.3 Network Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 481
Appendix F. Properties of Composite Materials . . . . . . . . . . . . . . . . . 483
F.1 Metal Matrix Composites . . . . . . . . . . . . . . . . . . . . . . . . . . . 483
F.2 Nonmetallics and Nonmetallic Composites . . . . . . . . . . . . . . . . 483
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 487
Supporting Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxx

http://catdir.loc.gov/catdir/toc/ecip0512/2005013254.html
 
.
This is quite an advanced sciences book, but this is just theory, it needs to be simulated on Matlab _which is open to almost everyone_, but the main tests are applied in $ R&D $ laboratories, and that is where the US leads.. one can add China too and some European countries.. Theory is important, and applying it is much more important, if one wants to benefit from its findings..

Table of contents for Radar and laser cross section engineering

Table of Contents
Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv
Abbreviations and Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix
Chapter 1. Radar Cross Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Radar Systems and the Radar Range Equation . . . . . . . . . . . . . . . 2
1.3 Polarization Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.4 Multipath and Other Environmental Effects . . . . . . . . . . . . . . . . 14
1.5 Radar Counter measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.6 General Characteristics of Radar Cross Sections . . . . . . . . . . . . . 21
1.7 Scattering Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.8 Methods of Radar Cross Section Prediction . . . . . . . . . . . . . . . . 28
1.9 Target Scattering Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Chapter 2. Basic Theorems, Concepts, and Methods . . . . . . . . . . . . . 39
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.2 Uniqueness Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.3 Reciprocity Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.4 Duality Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.5 Radiation Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.6 Superposition Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.7 Theorem of Similitude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.8 Method of Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.9 Equivalence Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.10 Physical Optics Approximation . . . . . . . . . . . . . . . . . . . . . . . . 51
2.11 Huygen's Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
2.12 Arrays of Scatterers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
2.13 Impedance Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . 69
2.14 Discontinuity Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . 76
2.15 Surface Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Chapter 3. Frequency-Domain Numerical Methods . . . . . . . . . . . . . . 97
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
3.2 Electric Field Integral Equation . . . . . . . . . . . . . . . . . . . . . . . . 98
3.3 Magnetic Field Integral Equation . . . . . . . . . . . . . . . . . . . . . . 101
3.4 The Vector Wave Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
3.5 Method of Moments Technique . . . . . . . . . . . . . . . . . . . . . . . 103
3.6 Method of Moments for Surfaces . . . . . . . . . . . . . . . . . . . . . . 112
3.7 Other Integral Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
3.8 Finite Element Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
Chapter 4. Time-Domain Numerical Methods . . . . . . . . . . . . . . . . . 149
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
4.2 Relationship Between Time and Frequency . . . . . . . . . . . . . . . 151
4.3 Finite Difference-Time-Domain Method . . . . . . . . . . . . . . . . . 154
4.4 Finite Difference-Time-Domain Equations in One Dimension . . 165
4.5 Finite Difference-Time-Domain Method in Two Dimensions . . . 188
4.6 Finite Difference-Time-Domain Method in Three Dimensions . . 205
4.7 Finite Integration Technique . . . . . . . . . . . . . . . . . . . . . . . . . . 208
4.8 The Transmission Line Matrix Method . . . . . . . . . . . . . . . . . . 212
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
Chapter 5. Microwave Optics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
5.2 Geometrical Optics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
5.3 Geometrical Theory of Diffraction . . . . . . . . . . . . . . . . . . . . . 231
5.4 Diffraction Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
5.5 Geometrical Theory of Diffraction Equivalent Currents . . . . . . . 241
5.6 Physical Theory of Diffraction . . . . . . . . . . . . . . . . . . . . . . . . 243
5.7 Incremental Length Diffraction Coefficients . . . . . . . . . . . . . . . 246
5.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
Chapter 6. Complex Targets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
6.2 Geometrical Components Method . . . . . . . . . . . . . . . . . . . . . . 258
6.3 Antenna Scattering Characteristics . . . . . . . . . . . . . . . . . . . . . 266
6.4 Basic Equation of Antenna Scattering . . . . . . . . . . . . . . . . . . . 268
6.5 Conjugate-Matched Antennas . . . . . . . . . . . . . . . . . . . . . . . . 271
6.6 Rigorous Solutions for Antenna Radar Cross Section . . . . . . . . . 272
6.7 Scattering from Antenna Feeds . . . . . . . . . . . . . . . . . . . . . . . . 277
6.8 Feed Scattering Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 289
6.9 Rigorous Calculation of Feed Radar Cross Section . . . . . . . . . . 296
6.10 Frequency Selective Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . 301
6.11 Cavities and Ducts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305
6.12 Error and Imperfections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
6.13 Random Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
6.14 Periodic Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
6.15 Miscellaneous Discontinuities . . . . . . . . . . . . . . . . . . . . . . . . 324
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328
Chapter 7. Radar Cross Section Reduction . . . . . . . . . . . . . . . . . . . 335
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335
7.2 Target Shaping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335
7.3 Materials Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338
7.4 RCS Reduction Techniques Employing Materials . . . . . . . . . . . 352
7.5 Composite and Artificial Materials . . . . . . . . . . . . . . . . . . . . . 357
7.6 Passive Cancellation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371
7.7 Active Cancellation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373
7.8 Treatments for Traveling Waves . . . . . . . . . . . . . . . . . . . . . . . 374
7.9 Antenna Radar Cross Section Reduction . . . . . . . . . . . . . . . . . 374
7.10 Cavity Cross Section Reduction . . . . . . . . . . . . . . . . . . . . . . . 377
7.11 Summary: Radar Cross Section Design Guidelines . . . . . . . . . . 378
7.12 Inverse Scattering and Radar Cross Section Synthesis . . . . . . . . 380
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388
Chapter 8. Measurement of Radar Cross Section . . . . . . . . . . . . . . . 397
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397
8.2 Chamber Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398
8.3 Sources of Measurement Error . . . . . . . . . . . . . . . . . . . . . . . . 403
8.4 Resolved Radar Cross Section and Target Imaging . . . . . . . . . . 404
8.5 Diagnostic Techniques for Maintenance . . . . . . . . . . . . . . . . . . 407
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408
Chapter 9. Laser Cross Section . . . . . . . . . . . . . . . . . . . . . . . . . . . 411
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411
9.2 Scattering and Propagation of Light . . . . . . . . . . . . . . . . . . . . 411
9.3 Definition of Quantities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413
9.4 Laser Radar Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416
9.5 Definition of Laser Cross Section . . . . . . . . . . . . . . . . . . . . . . 419
9.6 Bidirectional Reflectance Distribution Function . . . . . . . . . . . . 420
9.7 Diffuse Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423
9.8 Calculation of Laser Cross Section . . . . . . . . . . . . . . . . . . . . . 427
9.9 Multiple Reflections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 430
9.10 Laser Cross Section Reduction Methods . . . . . . . . . . . . . . . . . 433
9.11 Antireflection Films . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433
9.12 Laser Cross Section Prediction for Complex Targets . . . . . . . . . 436
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437
Appendix A. Notation, Definitions, and Review of Electromagnetics . . 441
A.1 Field Quantities and Constitutive Parameters . . . . . . . . . . . . . . 441
A.2 Maxwell's Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441
A.3 Current Densities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442
A.4 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443
A.5 Magnetic Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444
A.6 Types of Media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444
A.7 Wave Equation and Plane Waves . . . . . . . . . . . . . . . . . . . . . . . 445
A.8 Wave Polarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 446
A.9 Plane Waves in Lossy Media . . . . . . . . . . . . . . . . . . . . . . . . . 447
A.10 Group Velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449
A.11 Power Flow and the Poynting Vector . . . . . . . . . . . . . . . . . . . . 449
A.12 Reflection and Refraction at an Interface . . . . . . . . . . . . . . . . . 450
A.13 Total Reflection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 452
A.14 Standing Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453
Appendix B. Coordinate Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 455
B.1 Orthogonal Coordinate Systems . . . . . . . . . . . . . . . . . . . . . . . 455
B.2 Coordinate Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . 456
B.3 Position Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 458
B.4 Direction Cosines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 458
B.5 Azimuth-Elevation Coordinate System . . . . . . . . . . . . . . . . . . 460
Appendix C. Review of Antenna Theory . . . . . . . . . . . . . . . . . . . . . . 462
C.1 Antenna Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 462
C.2 Aperture Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 468
C.3 Array Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 470
Appendix D. Review of Transmission Lines . . . . . . . . . . . . . . . . . . . . 474
D.1 Waves on Transmission Lines . . . . . . . . . . . . . . . . . . . . . . . . . 474
D.2 Transmission Line Equivalent of Plane Wave Reflection . . . . . . . 475
D.3 Impedance Transformers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 476
Appendix E. Scattering Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 478
E.1 Scattering Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 478
E.2 Properties of the Scattering Matrix . . . . . . . . . . . . . . . . . . . . . 479
E.3 Network Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 481
Appendix F. Properties of Composite Materials . . . . . . . . . . . . . . . . . 483
F.1 Metal Matrix Composites . . . . . . . . . . . . . . . . . . . . . . . . . . . 483
F.2 Nonmetallics and Nonmetallic Composites . . . . . . . . . . . . . . . . 483
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 487
Supporting Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxx

http://catdir.loc.gov/catdir/toc/ecip0512/2005013254.html

My main question is: how much of stealth is based on geometric shape vs material selection? If stealthy geometry plays a large part, then it should be a target for Block 4. The book also helps in understanding the real theory behind modern EW tactics such as active cancellation.

@Cringe kindly avoid derailing the thread. Thank you.
 
. . .
My main question is: how much of stealth is based on geometric shape vs material selection? If stealthy geometry plays a large part, then it should be a target for Block 4. The book also helps in understanding the real theory behind modern EW tactics such as active cancellation.

@Cringe kindly avoid derailing the thread. Thank you.
Well as it can be seen from the difference between the F117 and the F-22, the Material selection won the biggest ratio, but shape is still important, not as extreme as the F-117 though.. there is also a third extremely important component, which is of paramount importance in future wars and that is the very advanced electronic suites, including the AESA radar, the passive optical detectors, the warning systems...etc and, their integration withing the fighter airplane as well as in a network of fighters, AWACSs, Drones, Satellites and C4/5i..
 
.
AIAA books tend to be really good books but those can be quite advanced and concise since normally those are not big volume books and this book is around <500 pages... so perhaps it would be better to combine it with some more basic books solely focused at basic radar theory for detailed explanation and real world application. This has first two chapters dedicated to explaining the basics which is concise. So it really depends on the reader's level. If he already knows the basic stuff and has good background in mathematics, he can directly study this book.

Chapter 3 involves mathematical equations and chapter 4 would require understanding of Laplace transformation for freq-time domain conversions/transformations and Z-transforms ( discrete counterpart of Laplace-transform) for understanding the oscillation and to identify the stability of the system through frequency response of the system and thus basic know how of Fourier analysis is important. Chap4 is also talking about the finite differences so some knowledge of numerical methods is also desired. I would say a good basic course/book in Signal Analysis can help in understanding the content of this book.

However like most books it comes with a Matlab code for understanding the concepts and simulating the system with different inputs, gains, BC's and math models so that provides some sort of alternative to the hardware labs.

Since it is not my area of expertise (as of now) and I have not read this book myself yet so I'm not a position to provide a good analysis/recommendation. However since I fulfil the requirements, I may study the subject at some point in future. Right now in my focus are the submersible structures and hydrodynamics.
 
Last edited:
.
AIAA books tend to be really good books but those can be quite advanced and concise since normally those are not big volume books and this book is around <500 pages... so perhaps it would be better to combine it with some more basic books solely focused at basic radar theory for detailed explanation and real world application. This has first two chapters dedicated to explaining the basics which is concise. So it really depends on the reader's level. If he already knows the basic stuff and has good background in mathematics, he can directly study this book.

Chapter 3 involves mathematical equations and chapter 4 would require understanding of Laplace transformation for freq-time domain conversions/transformations and Z-transforms ( discrete counterpart of Laplace-transform) for understanding the oscillation and to identify the stability of the system through frequency response of the system and thus basic know how of Fourier analysis is important. Chap4 is also talking about the finite differences so some knowledge of numerical methods is also desired. I would say a good basic course/book in Signal Analysis can help in understanding the content of this book.

However like most books it comes with a Matlab code for understanding the concepts and simulating the system with different inputs, gains, BC's and math models so that provides some sort of alternative to the hardware labs.

Since it is not my area of expertise (as of now) and I have not read this book myself yet so I'm not a position to provide a good analysis/recommendation. However since I fulfil the requirements, I may study the subject at some point in future. Right now my focus are the submersible structures and hydrodynamics.

Chapter 7 looks promising. It might be possible to jump directly to chapter 7 and read for breadth. I'll let you know soon ;)
 
.
Well as it can be seen from the difference between the F117 and the F-22, the Material selection won the biggest ratio, but shape is still important, not as extreme as the F-117 though.. there is also a third extremely important component, which is of paramount importance in future wars and that is the very advanced electronic suites, including the AESA radar, the passive optical detectors, the warning systems...etc and, their integration withing the fighter airplane as well as in a network of fighters, AWACSs, Drones, Satellites and C4/5i..

Sir material selection could be for other properties such as tensile strength and lightness. So far in my internet search, the only 'stealth' materials I have encountered are composites. Also, what matters for stealth is surface materials.

Sensor fusion is important, but I would give PAC until Block 5 to work it out. It would definitely require a bigger engine to supply all that power for number crunching. A basic stealth geometry would be a very good advancement in terms of capability. It will require super computing facilities to model the stealth while not sacrificing aerodynamics. This capability should then merge seamlessly with 5th gen work. What would be wrong is to take 5th gen as one big project with many moving parts and no platform where individual successes can be tested in the real world. It would quickly become a Tejas.
 
.
Chapter 7 looks promising. It might be possible to jump directly to chapter 7 and read for breadth. I'll let you know soon ;)
Yeah I mean you can get an idea and some basic overview but to know things at depth and cover most of the knowledge, you will need to follow it sequentially and also fulfil the requirements. Since I don't know about your background sir, so I'm not able to say anything for sure.
 
.
Sir material selection could be for other properties such as tensile strength and lightness. So far in my internet search, the only 'stealth' materials I have encountered are composites. Also, what matters for stealth is surface materials.

Sensor fusion is important, but I would give PAC until Block 5 to work it out. It would definitely require a bigger engine to supply all that power for number crunching. A basic stealth geometry would be a very good advancement in terms of capability. It will require super computing facilities to model the stealth while not sacrificing aerodynamics. This capability should then merge seamlessly with 5th gen work. What would be wrong is to take 5th gen as one big project with many moving parts and no platform where individual successes can be tested in the real world. It would quickly become a Tejas.
https://defence.pk/pdf/threads/plasma-stealth-technology.351517/
https://defence.pk/pdf/threads/five-stealth-technology-advances-that-change-the-game.480450/

https://defence.pk/pdf/threads/fundamental-and-applied-problems-stealth-technology.480412/

https://defence.pk/pdf/threads/the-sound-of-stealth.330135/

https://defence.pk/pdf/threads/the-benefits-of-stealth-and-situational-awareness.463532/

https://defence.pk/pdf/threads/analyzing-active-cancellation-stealth.452459/

https://defence.pk/pdf/threads/assemble-an-active-cancellation-stealth-system.450904/
----------------------------------------------------------------------------------------------------

The best 5th generation fighters will use an amalgam of the existing stealth technologies; i.e., Plasma stealth, shaping, electromagnetic waves absorbing paints and and/or materials, on top of the existing and new ECM and ECCM, to say the least. Each of which will be adapted to a particular situation and environment, since for example plasma stealth technology does not hold for supersonic speeds or aerial combat, it can still be used for standoff. Hence many combinations of the existing stealth technologies can be concocted and used at will by the pilot considering his battlefield combat awareness of the environ and the combat mission to which he was assigned. It is a matter of information systems integration with combat software that adds the control of any controlable stealth tech, like some additional datalink.
 
Last edited:
.
Yeah I mean you can get an idea and some basic overview but to know things at depth and cover most of the knowledge, you will need to follow it sequentially and also fulfil the requirements. Since I don't know about your background sir, so I'm not able to say anything for sure.

If I put myself to it, I would write a better tutorial of fourier and laplace transforms than available in usual textbooks. Students should be able to imagine the concepts in their minds, not just perform operations on paper.

https://defence.pk/pdf/threads/plasma-stealth-technology.351517/
https://defence.pk/pdf/threads/five-stealth-technology-advances-that-change-the-game.480450/

https://defence.pk/pdf/threads/fundamental-and-applied-problems-stealth-technology.480412/

https://defence.pk/pdf/threads/the-sound-of-stealth.330135/

https://defence.pk/pdf/threads/the-benefits-of-stealth-and-situational-awareness.463532/

https://defence.pk/pdf/threads/analyzing-active-cancellation-stealth.452459/

https://defence.pk/pdf/threads/assemble-an-active-cancellation-stealth-system.450904/
----------------------------------------------------------------------------------------------------

The best 5th generation fighters will use an amalgam of the existing stealth technologies; i.e., Plasma stealth, shaping, electromagnetic waves absorbing paints and and/or materials, on top of the existing and new ECM and ECCM, to say the least. Each of which will be adapted to a particular situation and environment, since for example plasma stealth technology does not hold for supersonic speeds or aerial combat, it can still be used for standoff. Hence many combinations of the existing stealth technologies can be concocted and used at will by the pilot considering his battlefield combat awareness of the environ and the combat mission to which he was assigned. It is a matter of information systems integration with combat software that adds the control of any controlable stealth tech, like some additional datalink.

Agreed. All of these are elements of stealth. In terms of achieving these goals, which one do you think is easier to achieve for PAC?
 
.
If I put myself to it, I would write a better tutorial of fourier and laplace transforms than available in usual textbooks. Students should be able to imagine the concepts in their minds, not just perform operations on paper.
That's really good then you should write here, you make a dedicated thread on pdf.
 
. .
Back
Top Bottom