What's new

BMD in final stages of development

that was something i wanted hear!!!!!!!this can ultimately be an MIRV killer!!!!!:bunny:

what about an interceptor that has a big mesh to catch the missile and then the interceptor rockets can take it to exosphere and blow it self up.....or take it to the place it came from.....like china.....so when their own missile blows up they are not able to blame india for it....it could be our secret weapon...... :partay:...i know its chutyapaa but is it viable???like a 4 missile put together with a big mesh in between them.....when they get close they can split and open the mesh to catch the missile......:enjoy:, when the missile gets caught, the interceptor rockets take it wherever they want like to Pakistan......now the real stament would be chinese missile shocks pakistan:chilli:

that's not possible man.

I think per single missile we'll send two interceptor to make sure its downed

It'll incercept and destroy the target in enemy's Air itself (theoretically)
 
that was something i wanted hear!!!!!!!this can ultimately be an MIRV killer!!!!!:bunny:

what about an interceptor that has a big mesh to catch the missile and then the interceptor rockets can take it to exosphere and blow it self up.....or take it to the place it came from.....like china.....so when their own missile blows up they are not able to blame india for it....it could be our secret weapon...... :partay:...i know its chutyapaa but is it viable???like a 4 missile put together with a big mesh in between them.....when they get close they can split and open the mesh to catch the missile......:enjoy:, when the missile gets caught, the interceptor rockets take it wherever they want like to Pakistan......now the real stament would be chinese missile shocks pakistan:chilli:
Wtf? Are you a high school student?
 
I think it's boost phase not terminal....correct me if I'm wrong!

Dude now i'm confused..... Boost phase may be well suitable against Pakistani missiles as their launch pads are near to ours but against Chinese difficult but we can shoot it down durin mid-course or terminal phase
 
Wtf? Are you a high school student?
naa iam an engineer...mechanical engineer......u know how engineer's use trial and error method.....this could be a good system.......if powerful rockets are used to drive away after the catch......hahaha imagination power is too much......:partay:....iam real engineer from MU:coffee:

Dude now i'm confused..... Boost phase may be well suitable against Pakistani missiles as their launch pads are near to ours but against Chinese difficult but we can shoot it down durin mid-course or terminal phase
by that time MIRV's could have been launched, to make the situation worse, mirv's are small, highly mobile and can maneuver mid air....
 
naa iam an engineer...mechanical engineer......u know how engineer's use trial and error method.....this could be a good system.......if powerful rockets are used to drive away after the catch......hahaha imagination power is too much......:partay:....iam real engineer from MU:coffee:
Lol bhai...just imagine a ballistic missile with >8mach and intercepting missile with >3 mach..
Guess the relative velocity!!!
You want to catch it with a mesh???
It's basic physics bro....
Don't call it imagination, it's stupidity!!

naa iam an engineer...mechanical engineer......u know how engineer's use trial and error method.....this could be a good system.......if powerful rockets are used to drive away after the catch......hahaha imagination power is too much......:partay:....iam real engineer from MU:coffee:


by that time MIRV's could have been launched, to make the situation worse, mirv's are small, highly mobile and can maneuver mid air....
Dude you are getting confused between MIRV and MaRV...
 
Lol bhai...just imagine a ballistic missile with >8mach and intercepting missile with >3 mach..
Guess the relative velocity!!!
You want to catch it with a mesh???
It's basic physics bro....
Don't call it imagination, it's stupidity!!
aye u just broke my dream, how about a missile mine in sea????it will have sensors and will be connected to satellites when something comes close to it, it will report to HQ and if its enemy warship missiles can have a launch and finish it off.......it wont hurt any civilian ships it will be just for war time quad packed missile floating in sea at every 100 km can protect our 7000 km coast line......how about this.....name would be CDMS(coastal defense missile system):azn:


naaa.......no not confused with maRV
 
by that time MIRV's could have been launched, to make the situation worse, mirv's are small, highly mobile and can maneuver mid air....

Never heard that MIRV can maneuver. To destroy the target at boost stage is difficult because the boost stage lasts about 3 to 3 and half minute, the lang range radar has to identify the target and intercept, If the Enemy is firing from deep inside the territory means its going to be very difficult for pakistan its not big problem 3 minuts is enough
 
Last edited:
I have one question whatever India develops (DRDO) not inducted WHY...even so called indigenous Tejas or Arjunk being delayed may be directly deploy to museums only. So why you people are jumping so called BMD every time DRDO fooled you.:big_boss: :rofl:
 
aye u just broke my dream, how about a missile mine in sea????it will have sensors and will be connected to satellites when something comes close to it, it will report to HQ and if its enemy warship missiles can have a launch and finish it off.......it wont hurt any civilian ships it will be just for war time quad packed missile floating in sea at every 100 km can protect our 7000 km coast line......how about this.....name would be CDMS(coastal defense missile system):azn:


naaa.......no not confused with MARV
Stick to the thread's topic....
If you want to talk about your fantasies open another thread in a relevant section!!

I have one question whatever India develops (DRDO) not inducted WHY...even so called indigenous Tejas or Arjunk being delayed may be directly deploy to museums only. So why you people are jumping so called BMD every time DRDO fooled you.:big_boss: :rofl:
@Oscar take care of this mess sir!!
 
I have one question whatever India develops (DRDO) not inducted WHY...even so called indigenous Tejas or Arjunk being delayed may be directly deploy to museums only. So why you people are jumping so called BMD every time DRDO fooled you.:big_boss: :rofl:

Dude, Phase 1 is completed and 2 is almost finished, you need to go and check and read about the reactions of Pakistan establishments and media when the missile successfully intercepted a missile at 75km altitude.
 
@egodoc222 ok......:coffee:...but still one or two mirv out 8 or 10 would land on indian land.......helicopters and tanks were fantasies during
Leonardo da Vinci's time......:rolleyes:....its normal people like u who don't even try the impossible.....but I will keep thinking and try to make something that will be impenetrable....JAI HIND :(....

Never heard that MIRV can maneuver. To destroy the target at boost stage is difficult because the boost stage lasts about 3 to 3 and half minute, the lang range radar has to identify the target and intercept, If the Enemy is firing from deep inside the territory means its going to be very difficult for pakistan its not big problem 3 minuts is enough
hmm i could be wrong....or yes i am wrong..sorry but still many targets and hyper sonic speeds is a difficult tasks....

Haaan feel mirchi i just ask have a water pls
mirchi toh tumhe lage gi when your ultimate trump card nuke tipped pak painted missile blows up 70km over ur own territory....
 
@egodoc222 ok......:coffee:...but still one or two mirv out 8 or 10 would land on indian land.......helicopters and tanks were fantasies during
Leonardo da Vinci's time......:rolleyes:....its normal people like u who don't even try the impossible.....but I will keep thinking and try to make something that will be impenetrable....JAI HIND :(....


hmm i could be wrong....or yes i am wrong..sorry but still many targets and hyper sonic speeds is a difficult tasks....


mirchi toh tumhe lage gi when your ultimate trump card nuke tipped pak painted missile blows up 70km over ur own territory....
Haan kab woh tu prithvi tha :nono::rofl::rofl::rofl::rofl::rofl:
 
I have one question whatever India develops (DRDO) not inducted WHY...even so called indigenous Tejas or Arjunk being delayed may be directly deploy to museums only. So why you people are jumping so called BMD every time DRDO fooled you.

Been watching you for quite a while making off-topic rants and derailing threads like a fool - Here's a list of DRDO products that have been inducted in the Indian Military -

Aeronautics
  • The DRDO provided key avionics for the Sukhoi Su-30MKI programme under the "Vetrivel" programme. Systems developed by DRDO include radar warning receivers, radar and display computers. DRDO's radar computers, manufactured by HAL are also being fitted into Malaysian Su-30s.
  • The DRDO is part of the Indian Air Force's upgrade programmes for its MiG-27 and Sepecat Jaguar combat aircraft, along with the manufacturer Hindustan Aeronautics Limited. DRDO and HAL have been responsible for the system design and integration of these upgrades, which combine indigenously developed systems along with imported ones. DRDO contributed subsystems like the Tarang radar warning receiver, Tempest jammer, core avionics computers, brake parachutes, cockpit instrumentation and displays.
Other Hindustan Aeronautics programmes
Apart from the aforementioned upgrades, DRDO has also assisted Hindustan Aeronautics with its programmes. These include the HAL Dhruv helicopter and the HAL HJT-36. Over a hundred LRU (Line Replaceable Unit)'s in the HJT-36 have come directly from the LCA programme. Other duties have included assisting the Indian Air Force with indigenisation of spares and equipment. These include both mandatory as well as other items.

Unmanned aerial vehicles[edit]
The DRDO has also developed two unmanned aerial vehicles - the Nishant tactical UAV and the Lakshya (Target) Pilotless Target Aircraft (PTA).[10] The Lakshya PTA has been ordered by all three services for their gunnery target training requirements. Efforts are on to develop the PTA further, with an improved all digital flight control system, and a better turbojet engine.[11] The Nishant is a hydraulically launched short-ranged UAV for the tactical battle area. It is currently being evaluated by the Indian Navy and the Indian Paramilitary forces as well.

The DRDO is also going ahead with its plans to develop a new class of UAVs. These draw upon the experience gained via the Nishant programme, and will be substantially more capable. Referred to by the HALE (High Altitude Long Endurance) and MALE (Medium Altitude Long Endurance) designations. The MALE UAV has been tentatively named the Rustom,[12] and will feature canards and carry a range of payloads, including optronic, radar, laser designators and ESM. The UAV will have conventional landing and take off capability. The HALE UAV will have features such as SATCOM links, allowing it to be commanded beyond line of sight. Other tentative plans speak of converting the LCA into a UCAV (unmanned combat aerial vehicle), and weaponising UAVs.

Indigenisation efforts[edit]
DRDO has been responsible for the indigenisation of key defence stores and equipment.[13] DRDO has assisted Hindustan Aeronautics Ltd and the IAF with the indigenisation of spares and assemblies for several aircraft. DRDO laboratories have worked in coordination with academic institutes, the CSIR and even ISRO over projects required for theIndian Air Force and its sister services. DRDO's infrastructure is also utilised by other research organisations in India.

Armaments[edit]
DRDO often cooperates with the state owned Ordnance Factories Board for producing its items. These have led to issues of marginal quality control for some items, and time consuming rectification. Whilst these are common to the introduction of most new weapons systems, the OFB has had issues with maintaining the requisite schedule and quality of manufacture owing to their own structural problems and lack of modernisation. Criticism directed at the OFB is invariably used for the DRDO, since the users often make little distinction between the developer and the manufacturer.[citation needed] OFB has got more access to funding in recent times, and this is believed to have helped the organisation meet modern day requirements.

Even so, India's state owned military apparatus provides the bulk of its ammunition. The DRDO has played a vital role in the development of this ability since the role of private organisations in the development of small arms and similar items has been limited. A significant point in case is the INSAS rifle which has been adopted by the Indian Army as its standard battle rifle and is in extensive service. There have been issues with rifle quality in usage under extreme conditions in the heat, with the OFB stating that it will rectify these troubles with higher grade material and strengthening the unit. Prior troubles were also dealt with in a similar manner.[14] In the meantime, the rifle has found favour throughout the army and has been ordered in number by other paramilitary units and police forces.[15][16]

In recent years, India's booming economy has allowed the OFB to modernise with more state funding coming its way, to the tune of US$400 million invested during 2002-07.[17]The organisation hopes that this will allow it to modernise its infrastructure; it has also begun introducing new items, including a variant of the AK-47 and reverse engineered versions of the Denel 14/20 mm anti-material rifles.[18]

In the meantime, the DRDO has also forged partnerships with several private sector industrial partners, which have allowed it to leverage their strengths. Successful examples of this include the Pinaka MBRL, which has been assisted significantly by two private developers, Larsen and Toubro Ltd as well as TATA, apart from several other small scale industrial manufacturers.

The DRDO's various projects are as follows:

Small arms[edit]

Insas Assault Rifle
  • The INSAS weapon system has become the standard battle rifle for the Indian Army and paramilitary units.[19] Bulk production of a LMG variant commenced in 1998.[20] It has since been selected as the standard assault rifle of the Royal Army of Oman.
  • In 2010, DRDO completed the development of Oleo-resin plastic hand grenades (partly derived from the potent Bhut Jholokia chilli found in north-east India), as a less lethal way to control rioters, better tear gas shells and short-range laser dazzlers.[21]
Explosives[edit]
Chemical Kit for Detection of Explosives (CKDE)[edit]
A compact, low-cost and handy explosive detection kit has been designed and perfected for field detection of traces of explosives. The kit yields a colour reaction, based on which explosives can be detected in minutes. It is used for identification of all common military, civil and home-made explosive compositions, and is being used by Police and BSF for the detection of explosives.

Explosive Detection Kit (EDK)[edit]
In what has been termed a "reverse technology transfer",[22] the Explosive Detection Kit widely used in India by bomb detection squads and the armed forces since 2002, would be manufactured and sold in the US. The kit uses reagents to detect various chemicals present in explosives.[23]

Indian CL-20 explosive[edit]
A new high explosive is in the making at a DRDO lab that could replace other standard explosives of the armed forces such as RDX, HMX, FOX-7 and Amorphous Boron. Scientists at the Pune-based High Energy Materials Research Laboratory (HEMRL) have already synthesised an adequate quantity of CL-20, the new explosive, in their laboratory.

The powerful explosive can substantially reduce the weight and size of the warhead while packing much more punch. The compound, 'Indian CL-20' or 'ICL-20', was indigenously developed in HEMRL using inverse technology. CL-20, so named after the China Lake facility of the Naval Air Weapons Station in California, US, was first synthesised by Dr Arnold Nielson in 1987.

CL-20 or Octa-Nitro-Cubane is a Nitramine class of explosive 15 times as powerful as HMX. HMX itself is more than four times as potent as RDX.

CL-20-based Shaped Charges significantly improve the penetration of armour and could potentially be used in the bomb for the 120-mm main gun mounted on the MBT Arjun tanks. The CL-20, due to its reduced sensitivity enables easy handling and transportation and reduces the chances of mishap and loss to men, money, materials and machines.[24]

Artillery systems and ammunition[edit]
  • Pinaka multi barrel rocket launcher: This system has seen significant success. This system saw the DRDO cooperate extensively with the privately owned industrial sector in India.[25]
  • A new long-range tactical rocket system, not yet publicly named. The DRDO has commenced a project to field a long-range tactical strike system, moving on from the successful Pinaka project. The aim is to develop a long-range system able to strike at a range of 100–120 km, with each rocket in the system, having a payload of up to 250 kg. The new MBRS's rocket will have a maximum speed of 4.7 mach and will rise to an altitude of 40 km, before hitting its target at 1.8 mach. There is also a move to put a guidance system on the rockets whilst keeping cost constraints in mind. The DRDO has acquired the IMI-Elisra developed trajectory control system and its technology, for use with the Pinaka, and a further development of the system could presumably be used with the new MBRL as well.[26]
  • DRDO's ARDE developed 81 mm and the,[27] 120 mm illuminating bombs[28] and 105 mm illuminating shells[29] for the Indian Army's infantry and Artillery.
  • A 51 mm Lightweight Infantry Platoon Mortar for the Indian Army. A man portable weapon, the 51 mm mortar achieves double the range of 2-inch (51 mm) mortar without any increase in weight. Its new HE bomb uses pre-fragmentation technology to achieve vastly improved lethality vis-à-vis a conventional bomb. Besides HE, a family of ammunition consisting of smoke, illuminating and practice bombs has also been developed.[30] The weapon system is under production at Ordnance Factories.[31]
  • Proximity fuses for missiles and artillery shells. Proximity fuses are used with artillery shells for "air bursts" against entrenched troops and in anti-aircraft and anti-missile roles as well.[30]
  • Training devices: These include a mortar training device for the 81 mm mortar used by the infantry, a mortar training device for the 120 mm mortar used by the artillery, and a 0.50-inch (13 mm) sub-calibre training device for 105 mm Vijayanta tank gun.[30]
  • The Indian Field Gun, a 105 mm field gun was developed for the Indian Army and is in production.[32] This was a significant challenge for the OFB, and various issues were faced with its manufacture including reliability issues and metallurgical problems. These were rectified over time.
  • Submerged Signal Ejector cartridges (SSE), limpet mines, short-range anti-submarine rockets (with HE and practice warheads), the Indian Sea Mine which can be deployed against both ships and submarines. The DRDO also designed short- and medium-range ECM rockets which deploy chaff to decoy away anti-ship homing missiles. In a similar vein, they also developed a 3 in (76.2 mm) PFHE shell, pre-fragmented and with a proximity fuse,[33] for use against anti-ship missiles and other targets, by the Navy. All these items are in production.[30][34]
  • For the Indian Air Force, DRDO has developed Retarder Tail Units and fuze systems for the 450 kg bomb used by strike aircraft, 68 mm "Arrow" rockets (HE, Practice and HEAT) for rocket pods used in air-to-ground and even air-to-air (if need be), a 450 kg high-speed, low-drag (HSLD) bomb and practice bombs (which mimic different projectiles with the addition of suitable drag plates) and escape aid cartridges for Air Force aircraft. All these items are in production.[30][34]
Tank armament[edit]
DRDO's ARDE also developed other critical systems, such as the Arjun Main Battle Tank's 120 mm rifled main gun and is presently engaged in the development of the armament for the Future IFV, the "Abhay". The DRDO is also a member of the trials teams for the T-72 upgrade and its fire control systems. Earlier on, the DRDO also upgraded theVijayanta medium tank with new fire control computers.

Electronics and computer sciences[edit]
Electronic warfare[edit]
EW systems for the Army[edit]
  • It is India's largest electronic warfare system. It is a land based EW project, consisting of 145 vehicles. The Samyukta consists of ESM and ECM stations for both communication and non-com (radar etc.) systems. The Indian Army has ordered its Signal Corps to be a prime contributor in the design and development stage, along with the DRDO's DLRL. The scale of this venture is substantial - it comprises COMINT and Electronic intelligence stations which can monitor and jam different bands for both voice/data as well as radar transmissions. In contrast to other such systems, Samyukta is an integrated system, which can perform the most critical battlefield EW tasks in both COM and Non-COM roles. The system will be the first of its type in terms of its magnitude and capability in the Army. Its individual modules can also be operated independently.[35] A follow on system known as Sauhard is under development.[36]
  • The Safari IED suppression system for the army and paramilitary forces and the Sujav ESM system meant for high accuracy direction finding and jamming of communication transceivers.[37]
EW systems for the Air Force[edit]
  • Radar warning receivers for the Indian Air Force of the Tarang series. These have been selected to upgrade most of the Indian Air Force's aircraft such as for the MiG-21, MiG-29, Su-30 MKI, MiG-27 and Jaguar as well as self-protection upgrades for the transport fleet.
  • The Tranquil RWR for MiG-23s (superseded by the Tarang project) and the Tempest jamming system for the Air Force's MiG's. The latest variant of the Tempest jamming system is capable of noise, barrage, as well as deception jamming as it makes use of DRFM. The DRDO has also developed a High Accuracy Direction Finding system (HADF) for the Indian Air Force's Su-30 MKIs which are fitted in the modular "Siva" pod capable of supersonic carriage.[38] This HADF pod is meant to cue Kh-31 Anti radiation missiles used by the Su-30 MKI for SEAD.
  • DRDO stated in 2009 that its latest Radar warning receiver for the Indian Air Force, the R118, had gone into production. The R118 can also fuse data from different sensors such as the aircraft radar, missile/laser warning systems and present the unified data on a multi-function display. The DRDO also noted that its new Radar Warner Jammer systems (RWJ) were at an advanced stage of development and would be submitted for trials. The RWJ is capable of detecting all foreseen threats and jamming multiple targets simultaneously.
  • Other EW projects revealed by the DRDO include the MAWS project (a joint venture by the DRDO and EADS) which leverages EADS hardware and DRDO software to develop MAWS systems for transport, helicopter and fighter fleets. DRDO also has laser warning systems available.
  • A DIRCM (Directed Infra Red Countermeasures) project to field a worldclass DIRCM system intended to protect aircraft from infrared guided weapons.
  • The DRDO is also developing an all new ESM project in cooperation with the Indian Air Force's Signals Intelligence Directorate, under the name of "Divya Drishti" (Divine Sight). Divya Drishti will field a range of static as well as mobile ESM stations that can "fingerprint" and track multiple airborne targets for mission analysis purposes. The system will be able to intercept a range of radio frequency emissions like radar, navigational, communication or electronic countermeasure signals. The various components of the project will be networked via SATCOM links.
  • Additional DRDO EW projects delivered to the Indian Air Force have included the COIN A and COIN B SIGINT stations. DRDO and BEL developed ELINT equipment for the Indian Air Force, installed on the service's Boeing 737s and Hawker Siddeley Avro aircraft. DRDO has also developed a Radar Fingerprinting System for the IAF and the Navy.
  • Another high accuracy ESM system is being developed by the DRDO for the AEW&C project. The Indian Air Force's AEW&C systems will also include a comprehensive ESM suite, capable of picking up both radars as well as conducting Communications Intelligence.
Radars[edit]
The DRDO has steadily increased its radar development. The result has been substantial progress in India's ability to design and manufacture high power radar systems with locally sourced components and systems. This began with the development of short-range 2D systems (Indra-1) and has now extended to high power 3D systems like LRTR intended for strategic purposes. Several other projects span the gamut of radar applications, from airborne surveillance (AEW&C) to firecontrol radars (land based and airborne). The DRDO's productionised as well as production-ready radar systems include:

  • INDRA series of 2D radars meant for Army and Air Force use. This was the first high power radar developed by the DRDO, with the Indra-I radar for the Indian Army, followed by Indra Pulse Compression (PC) version for the Indian Air Force, also known as the Indra-II, which is a low level radar to search and track low flying cruise missiles, helicopters and aircraft. These are 2D radars which provide range and azimuth information and are meant to be used as gap fillers. The Indra 2 PC has pulse compression providing improved range resolution. The series are used both by the Indian Air Force and the Indian Army[39]
  • Rajendra fire control radar for the Akash SAM: The Rajendra is stated to be ready. However, it can be expected that further iterative improvements will be made. The Rajendra is a high power Passive electronically scanned array radar (PESA), with the ability able to guide up to 12 Akash SAMs against aircraft flying at low to medium altitudes. The Rajendra has a detection range of 80 km with 18 km height coverage against small fighter sized targets and is able to track 64 targets, engaging 4 simultaneously, with up to 3 missiles per target. The Rajendra features a fully digital high speed signal processing system with adaptive moving target indicator, coherent signal processing, FFTs and variable pulse repetition frequency. The entire PESA antenna array can swivel 360 degrees on a rotating platform. This allows the radar antenna to be rapidly repositioned and even conduct all round surveillance.[40]
  • Central Acquisition Radar, a state of the art planar array S-Band radar operating on the stacked beam principle. With a range of 180 km, it can track while scan 200 fighter sized targets. Its systems are integrated on high mobility, locally built TATRA trucks for the Army and Air Force; however it is meant to be used by all three services. Initially developed for the long-running Akash SAM system, seven were ordered by the Indian Air Force for their radar modernisation programme and two of another variant were ordered by the Indian Navy for their P-28 Corvettes. The CAR has been a significant success for radar development in India, with its state of the art signal processing hardware.[41][42] The ROHINI is the IAF specific variant while the REVATHI is the Indian Navy specific variant. The ROHINI has a more advanced Indian developed antenna in terms of power handling and beamforming technology while the REVATHI adds two axis stabilisation for operation in naval conditions, as well as extra naval modes.

    BFSR-SR
  • BFSR-SR, a 2D short-range Battle Field Surveillance Radar, meant to be manportable. Designed and developed by LRDE, the project was a systematic example of concurrent engineering, with the production agency involved through the design and development stage. This enabled the design to be brought into production quickly.[43][44] The radar continues to progress further in terms of integration, with newer variants being integrated with thermal imagers for visually tracking targets detected by the radar. Up to 10 BFSR-SR can be networked together for network centric operation. It is in use with the Indian Army and the BSF as well as export customers.
  • Super Vision-2000, an airborne 3D naval surveillance radar, meant for helicopters and light transport aircraft. The SV-2000 is a lightweight, high performance, slotted array radar operating in the X-Band. It can detect sea-surface targets such as a periscope or a vessel against heavy clutter and can also be used for navigation, weather mapping and beacon detection. The radar can detect a large vessel at over 100 nautical miles (370 km). It is currently under modification to be fitted to the Advanced Light Helicopter and the Navy's Do-228's. Variants can be fitted to the Navy's Ka-25's as well.[45] The radar has been inducted by the Indian Navy and a more advanced variant of the Super Vision, known as the XV-2004 is also operational, and features an ISAR, SAR Capability.
  • Swordfish Long Range Tracking Radar, a 3D AESA was developed with assistance from Elta of Israel and is similar to Elta's proven GreenPine long-range Active Array radar. The DRDO developed the signal processing and software for tracking high speed ballistic missile targets as well as introduced more ruggedisation. The radar uses mostly Indian designed and manufactured components such as its critical high power, L Band Transmit-Receive modules and other enabling technologies necessary for active phased array radars. The LRTR can track 200 targets and has a range of above 500 km. It can detect Intermediate-range ballistic missile. The LRTR would be amongst the key elements of the Indian Ballistic Missile Defence Programme. DRDO would provide the technology to private and public manufacturers to make these high power systems.[46]
  • 3D Multi-Function Control Radar (MFCR) was developed as part of the Indian anti-ballistic missile programme in cooperation with THALES of France. The MFCR is an active phased array radar and complements the Swordfish Long Range Tracking Radar, for intercepting ballistic missiles. The MFCR will also serve as the fire control radar for the AAD second tier missile system of the ABM programme. The AAD has a supplementary role against aircraft as well and can engage missiles and aircraft up to an altitude of 30 km. The MFCR fills out the final part of the DRDO's radar development spectrum, and allows India to manufacture long-range 3D radars that can act as the nodes of an Air Defence Ground Environment system.
  • 2D Low Level Lightweight Radar (LLLR) for the Indian Army, which requires many of these units for gap-filling in mountainous terrain. The Indian Air Force will also acquire then for key airbases. The LLLR is a 2D radar with a range of 40 km against a 2 square metre target, intended as a gapfiller to plug detection gaps versus low level aircraft in an integrated Air Defence Ground network. The LLLR makes use of Indra-2 technology, namely a similar antenna array, but has roughly half the range and is much smaller and a far more portable unit. The LLLR can track while scan 100 targets and provide details about their speed, azimuth and range to the operator. The LLLR makes use of the BFSR-SR experience and many of the subsystem providers are the same. Multiple LLLRs can be networked together. The LLLR is meant to detect low level intruders, and will alert Army Air Defence fire control units to cue their weapon systems.[47]
  • 3D Short Range Radar for the Indian Air Force - ASLESHA: The ASLESHA radars have a range of approximately 50 km against small fighter-sized targets and will be able to determine their range, speed, azimuth and height. This radar will enable the Indian Air Force Air Defence units to accurately track low level intruders. The radar is a semi-active phased array with a 1-metre square aperture. The DRDO was in discussions with the Indian Navy to mount these systems on small ships.
  • Multi-mode radar, a 3D radar is a HAL project with DRDO's LRDE as a subsystem provider. This project to develop an advanced, lightweight Multi-mode fire control radar for the LCA Tejas fighter had faced challenges and was delayed. It has now been completed with Elta's (Israel) assistance. The multi-mode radar has range (for detection of a small fighter target) greater than 100 km, can track 10 targets, can engage 2 targets and uses lightweight system. It has been revealed that an all new combined signal and data processor had been developed, replacing the original separate units. The new unit is much more powerful and makes use of contemporary ADSP processors. The radar's critical hardware has also been developed and validated. The software for the air-to-air mode has been developed considerably (including search and track while scan in both look up and look down modes) but air-to-ground modes are still being worked upon. The radar development was shown to be considerably more mature than previously thought. At Aero India 2009, it was revealed that the 3D MMR project has been superseded by the new 3D AESA FCR project led by LRDE. The MMR has been completed with Elta Israel's assistance and now involved Elta EL/M-2032 technology for Air-to-Ground mapping and targeting. This "hybrid" MMR has been tested, validated and will be supplied for the initial LCA Tejas fighters.
  • DRDO has indigenised components and improved subsystems of various other licence produced radars manufactured at BEL with the help of BEL scientists and other researchers. These improvements include new radar data processors for licence produced signal radars as well as local radar assemblies replacing the earlier imported ones.
Apart from the above, the DRDO has also several other radar systems currently under development or in trials, these include:

  • BEL Weapon Locating Radar:

    A model of the BEL Weapon Locating RadarA 3D radar successfully developed from the Rajendra fire control radar for the Akash system, this radar uses a passive electronically scanned array to detect multiple targets for fire correction and weapon location. The system has been developed and demonstrated to the Army and orders have been placed[48] In terms of performance, the WLR is stated to be superior to the AN/TPQ-37, several of which were imported by India as an interim system while the WLR got ready.
  • Active Phased Array radar: a 3D radar for fighters, a MMR follow on, the APAR project aims to field a fully fledged operational AESA fire control radar for the expected Mark-2 version of the Light Combat Aircraft. This will be the second airborne AESA programme after the AEW&C project and intends to transfer the success DRDO has achieved in the ground based radar segment to airborne systems. The overall airborne APAR programme aims to prevent this technology gap from developing, with a broad based programme to bring DRDO up to par with international developers in airborne systems, both fire control and surveillance.
  • Synthetic aperture radar & Inverse synthetic aperture radar: the DRDO's LRDE is currently working on both SAR and ISAR radars for target detection and classification. These lightweight payloads are intended for both conventional fixed wing as well as UAVapplications.
  • Airborne Warning and Control: a new radar based on active electronically scanned array technology. The aim of the project is to develop in-house capability for high power AEW&C systems, with the system covering the development of a S-Band AESA array. The aircraft will also have data-links to link fighters plus communicate with the IAF's C3I infrastructure as well as a local SATCOM (satellite communication system), along with other on-board ESM and COMINT systems.[49]
  • Medium Range Battlefield Surveillance Radar: in 2009, the LRDE (DRDO) noted that it was working on a Long-range battlefield surveillance radar. It is possible that the BFSR-LR project has replaced this earlier project and the Indian Army will utilise the BEL built ELTA designed BFSR-MR's for Medium Range surveillance while using the LRDE designed systems for Long Range surveillance. The 2D radar will track ground targets and provide key intelligence to the Indian Army's artillery units, with the resultant information available on various tactical networks.
  • 3D Medium Power Radar: a spin-off of the experience gained via the 3D MFCR project, the 3D Medium Power Radar project is intended to field a radar with a range of approximately 300 km against small fighter sized targets. Intended for the Indian Air Force, the radar is an active phased array, and will be transportable. It will play a significant role being used as part of the nodes of the Indian Air Force's enhanced Air Defence Ground Environment System.
  • 3D Tactical Control Radar: a new programme, the TCR is an approximately 150 km ranged system for use by the Indian Army and Air Force. A highly mobile unit, it will also employ open architecture to provide easy upgrades, and a variety of modes and capabilities depending on the software fit. The aim of the 3D Medium Power Radar and TCR is to offer systems which can be deployed in a variety of roles, from fire control to surveillance, and not be tied to one role alone.
Command and control software and decision-making tools[edit]
  • Tactical tools for wargaming: Shatranj and Sangram for the Army, Sagar for the Navy and air war software for the Air Force. All these systems are operational with the respective services.
  • C3I systems: DRDO, in cooperation with BEL and private industry has developed several critical C3I (command, control, communications and intelligence systems) for the armed services. Under the project "Shakti", the Indian Army aims to spend US$300 million to network all its artillery guns using the ACCS (Artillery Command and Control System). Developed by DRDO's Centre for Artificial Intelligence & Robotics, the system comprises computers and intelligent terminals connected as a wide area network. Its main subsystems are the artillery computer centre, battery computer, remote access terminal and a gun display unit. The ACCS is expected to improve the Army's artillery operations by a factor of 10 and allowing for more rapid and accurate firepower. The ACCS will also improve the ability of commanders to concentrate that fire-power where it is most needed. The DRDO and BEL have also developed a Battle Management system for the Indian Army for its tanks and tactical units.
Other programmes in development for the Army include Corps level information and decision making software and tools, intended to link all units together for effective C3I. These systems are in production at DRDO's production partner, Bharat Electronics. These projects are being driven by the Indian Army Corps of Signals. The Indian Army is also moving towards extensive use of battlefield computers. DRDO has also delivered projects such as the Combat Net Radio for enhancing the Army's communication hardware.[50]

  • Data management and command and control systems for the Navy have been provided by the DRDO. The Navy is currently engaged in a naval networking project to network all its ships and shore establishments plus maritime patrol aircraft and sensors.
  • Radar netting and multi-sensor fusion software for linking the Indian Air Force's network of radars and airbases which have been successfully operationalised. Other systems include sophisticated and highly complex mission planning and C3I systems for missiles, such as the Agni and Prithvi ballistic missiles and the Brahmos cruise missile. These systems are common to all three services as all of them utilise different variants of these missiles.
  • Simulators and training tools: DRDO and private industry have collaborated on manufacturing a range of simulators and training devices for the three services, from entry level tests for prospective entrants to the Indian Air Force, to sophisticated simulators for fighter aircraft, transports and helicopters, tanks and gunnery devices.
Computing technologies[edit]
DRDO has worked extensively on high speed computing given its ramifications for most of its defence projects. These include supercomputers for computational flow dynamics, to dedicated microprocessor designs manufactured in India for flight controllers and the like, to high speed computing boards built around Commercial Off The Shelf (COTS) components, similar to the latest trends in the defence industry.

  • Supercomputing: DRDO's ANURAG developed the PACE+[51] Supercomputer for strategic purposes for supporting its various programmes. The initial version, as detailed in 1995, had the following specifications: The system delivered a sustained performance of more than 960 Mflops (million floating operations per second) for computational fluid dynamics programmes. Pace-Plus included 32 advanced computing nodes, each with 64 megabytes(MB) of memory that can be expanded up to 256MB and a powerful front-end processor which is a hyperSPARC with a speed of 66/90/100 megahertz (MHz). Besides fluid dynamics, these high-speed computer systems were used in areas such as vision, medical imaging, signal processing, molecular modeling, neural networks and finite element analysis. The latest variant of the PACE series is the PACE ++, a 128 node parallel processing system. With a front-end processor, it has a distributed memory and message passing system. Under Project Chitra, the DRDO is implementing a system with a computational speed of 2-3 Teraflops utilising commercial off the shelf components and the Open Source Linux Operating System.
  • Processors and other critical items: DRDO has developed a range of processors and application specific integrated circuits for its critical projects. Many of these systems are modular, in the sense that they can be reused across different projects. These include "Pythagoras processor" to convert cartesian to polar coordinates, ANUCO, a floating point coprocessor and several others, including the ANUPAMA 32-bit processor, which is being used in several DRDO projects.[52]
  • Electronic components: one of the endeavours undertaken by the DRDO has been to create a substantial local design and development capability within India, both in the private and public sectors. This policy has led to several hard to obtain or otherwise denied items, being designed and manufactured in India. These include components such as radar subsystems (product specific travelling wave tubes) to components necessary for electronic warfare and other cutting edge projects. Today, there are a range of firms across India, which design and manufacture key components for DRDO, allowing it to source locally for quite a substantial chunk of its procurement. The DRDO has also endeavoured to use COTS (Commercial off the shelf) processors and technology, and follow Open Architecture standards, wherever possible, in order to pre-empt obsolescence issues and follow industry practise. One significant example is the development of an Open Architecture computer for the Light Combat Aircraft, based on the PowerPC architecture and VME64 standard. The earlier Mission computer utilising Intel 486 DX chips has already seen success, with variants being present on the Su-30 MKI, Jaguar and MiG-27 Upgrades for the Indian Air Force.[53]
Laser Science & Technology Centre (LASTEC)[edit]
DRDO is working on a slew of directed energy weapons (DEWs). LASTEC has identified DEWs, along with space security, cyber-security and hypersonic vehicles as focus areas in the next 15 years.[54]

The aim is to develop laser-based weapons, deployed on airborne as well as seaborne platforms, which can intercept missiles soon after they are launched towards India in the boost phase itself. These will be part of the ballistic missile defence system being currently developed by DRDO. LASTEC is developing a 25-kilowatt laser system to hit a missile during its terminal phase at a distance of 5–7 km.

LASTEC is also working on a vehicle-mounted gas dynamic laser-based DEW system, under project Aditya, which should be ready in three years. Project Aditya is a technology demonstrator to prove beam control technology. Ultimately, solid-state lasers would be used.

LASTEC projects include:

Hand-held laser dazzler.
Non-Lethal systems:

  • Hand-held laser dazzler to disorient adversaries, without collateral damage. 50-metre range. Status: Ready.
  • Crowd-control dazzlers mounted on vehicles to dispel rioting mobs. 250-metre range. Status: Will take 2 more years.
  • Laser-based ordnance disposal system, which can be used to neutralise IEDs and other explosives from a distance. Status: Trials begin in 18 months.
Lethal Systems:

  • Air defence dazzlers to take on enemy aircraft and helicopters at range of 10 km. Status: Will take 2 more years.
  • 25-kilowatt laser systems to destroy missiles during their terminal phase at range of 5 to 7 km. Status: Will take 5 more years.
  • At least 100-kilowatt solid-state laser systems, mounted on aircraft and ships, to destroy missiles in their boost phase itself. Status:Will take a decade.
Combat vehicles & engineering[edit]
Tanks and armoured vehicles[edit]

  • Ajeya upgrade (Sanskrit: Invincible): upgrade for the T-72 fleet, incorporating a mix of locally made and imported subsystems. 250 have been ordered. Local systems include the DRDO-developed ERA, a DRDO-developed laser warning system and combat net radio, the Bharat Electronics Limited advanced land navigation system consisting of fibre optic gyros and GPS, NBC protection and DRDO's fire detection and suppression system amongst other items. Imported systems include a compact thermal imager and fire control system and a new 1000 hp engine.
  • Anti-tank ammunition: DRDO developed the FSAPDS for the 125 mm calibre, meant for India's T-72 tanks, the 120 mm FSAPDS andHESH rounds for the Arjun tank and 105 mm FSAPDS rounds for the Army's Vijayanta and T-55 tanks.[55] Significant amounts of 125 mm anti-tank rounds manufactured by the Ordnance Factory Board were rejected. The problems were traced to improper packaging of the charges by the OFB, leading to propellant leakage during storage at high temperatures. The locally developed rounds were rectified and requalified. Production of these local rounds was then restarted. Since 2001, over 130,000 rounds have been manufactured by the OFB. The DRDO said in 2005 that it had developed a Mk2 version of the 125 mm round, with higher power propellant for greater penetration. In parallel, the OFB announced in 2006 that it was also manufacturing 125 mm IMI (Israel Military Industries) rounds. It is believed that this might assist in improving the OFB's APFSDS manufacturing capability. These rounds and presumably the Mk2 round and will be used by both the T-72 and T-90 formations in the Indian Army.[56][57]
  • Various armour technologies and associated subsystems from composite armour and explosive reactive armour to Radios (Combat Net Radio with frequency hopping and encryption) and Battle Management systems. Fire-control systems are currently in production at BEL for the Arjun tanks. The first batch in production have a hybrid Sagem-DRDO system, with Sagem sights and local fire control computer.[58]
  • Arjun tank: The penultimate design was accepted by the Indian Army and is now in series production at HVF Avadi.


    The Arjun follows a template similar to the tanks developed by western nations, with containerised ammunition storage, with blast off panels, heavy Composite armour, a 120 mm gun (rifled as compared to smoothbore on most other tanks), a modern FCS with high hit probability and a 1,400 horsepower (1,000 kW) engine and a four-man crew.
    Originally designed in response to a possible Pakistani acquisition of the M1 Abrams, the project fell into disfavour once it became clear that Pakistan was instead standardising on cheaper (and less capable) T type tanks[citation needed]. In such a milieu, acquiring theArjun in huge numbers is simply unnecessary for the Indian Army, given the additional logistic costs of standardising on an entirely new type. The Indian Army ordered 124 units in 2000 and an additional 124 units in 2010[59][60] and work on Mark-II version of the tank has commenced.[61]
Modification of BMP-2 series[edit]
India licence manufactures the BMP-2 with local components. The vehicle has been used as the basis for several locally designed modifications, ranging from missile launchers to engineering support vehicles. The DRDO and its various labs have been instrumental in developing these mission specific variants for the Indian Army.

  • Armoured Engineering Reconnaissance Vehicle for enabling the combat engineers to acquire and record terrain survey data. The instruments mounted on the amphibious vehicle are capable of measuring width of obstacle, bed profile, water depth and bearing capacity of soil of the obstacle in real time which are helpful in taking decisions regarding laying of tracks or building of bridges.[62]
  • Armoured Amphibious Dozer with amphibious capability for earth moving operations in different terrain for preparation of bridging sites, clearing obstacles and debris and to fill craters. Self-recovery of the vehicle is also a built-in feature using a rocket-propelled anchor.[63]
  • Carrier Mortar Tracked: designed to mount and fire an 81 mm mortar from within vehicle. Capacity to fire from 40° to 85° and traverse 24° on either side; 108 rounds of mortar ammunition stowed.[64]
  • Armoured Ambulance based on the BMP-2 vehicle.
  • NBC Reconnaissance Vehicle: this variant has instrumentation for determining NBC contamination, as well as bringing back samples. The vehicle includes a plow for scooping up soil samples, to instrumentation such as a radiation dosimeter amongst other key items.
Other engineering vehicles[edit]
  • Bridge Layer Tank: claimed by DRDO to be the amongst the best bridging systems available on a medium class tank. It has an option to carry a 20-metre or 22-metre class 70 MLC bridge, which can be negotiated by all tanks in service with Indian Army.
  • Amphibious Floating Bridge and Ferry System intended for transporting heavy armour, troops and engineering equipment across large and deep water obstacles. The vehicle can convert to a fully decked bridge configuration of 28.4 metres in length in 9 minutes. Two more vehicles can be joined in tandem to form a floating bridge of 105 metres in length in 30 minutes. The bridge superstructure is integrated with floats to provide stability and additional buoyancy. The vehicle is also capable of retracting its wheels for use as a grounded bridge/ramp for high banks.[65]
  • Arjun Bridge Layer Tank: the BLT-Arjun is an all-new design with a scissor type bridge laying method, which helps it avoid detection from afar. It uses the chassis of the Arjun tank and can take higher weights than the BLT-72.[66]
  • Sarvatra Bridge layer: the bridge can be deployed over water and land obstacles to provide 75 metres of bridge-length for battle tanks, supply convoys and troops. The system consists of a light aluminum alloy scissors bridge and was approved for production in March 2000 trials. One complete set of the multi span mobile bridging system includes five truck-mounted units with a bridge-span of 15 metres each. The system is designed to take the weight of the Arjun MBT, by far the heaviest vehicle in the Army's inventory. Microprocessor based control system reduces the number of personnel required to deploy and operationalise the bridge. The bridging equipment is carried on a Tatra Kolos chassis and the system is built by Bharat Earth Movers Ltd (BEML).[67]
  • Mobile Decontamination System: with the NBC aspect of the battlefield in mind, the DRDO developed a Tatra vehicle based Mobile Decontamination system for decontamination of personnel, clothing, equipment, vehicles & terrain during war. The main sub-systems of mobile decontamination system are: pre-wash, chemical wash and post wash systems respectively. The pre-wash system consists of a 3000-litre stainless steel water tank and a fast suction pump. A high-pressure jet with a capacity of 3400 l/hour and a low-pressure jet with a capacity of 900 l/hour and 1600 l/hour are included. The chemical wash system is capable of mixing two powders and two liquids with variable feed rates and has a five-litre per minute slurry emulsion flow rate. The post wash system consists of a high-pressure hot water jet, a hot water shower for personnel and provision of steam for decontamination of clothing. The decontamination systems have been introduced into the services.[68] The system is under production for the Army at DRDO's partnering firms, with the DRDO itself manufacturing the pilot batch.[69]
  • Remotely Operated Vehicle (ROV)/DRDO Daksh: A tracked robotic vehicle with staircase climbing ability has been developed and is particularly intended for remote explosion of explosive devices. The ROV is carried in a specially designed carrier vehicle with additional armament and firing ports. The ROV itself is fairly sophisticated, with provision to carry various optronic payloads, an articulated gripper to pick up objects, an ability to traverse difficult terrain including staircases, as well as an integral waterjet projector to blow up explosive packages. It was formally inducted into Indian army's corps of engineers on 19 December 2011. The Indian army placed a total order of 20 ROVs and 6 of them are now operational with army. Each unit cost about Rs. 9 million.[70][71]
  • DRDO is developing robotic soldiers and mules capable of carrying luggage up to 400 kg at high altitudes.[72]
In development[edit]
  • Abhay IFV (Sanskrit: Fearless): an IFV design in prototype form. This IFV will have a 40 mm gun based on the proven Bofors L70 (Armour piercing and explosive rounds), a fire-control system derived from the Arjun MBT project with a thermal imager, all-electric turret and gun stabilisation, a locally designed FLAME launcher for locally manufactured Konkurs-M anti-tank missiles and an Indian diesel engine. The armour will be lightweight composite.
  • Tank Ex: a project to mount Arjun's turret on a T-72 chassis to combine high fire-power with a low silhouette. This is a DRDO initiative and not a specific Army demand. Reports emerged in 2008 that the Indian Army has rejected the tank[73] with two prototypes built.
  • Armoured vehicle for Paramilitary forces: a wheeled armoured vehicle, the AVP was displayed at Defexpo-2006. The AVP has armoured glass windows and firing ports, as well as provision for heavier calibre small arms, and crowd control equipment. Currently at prototype stage.
  • Mining and De-mining equipment: the Self Propelled Mine Burier has been developed by the DRDO for a requirement projected by the Indian Army. It is an automated mine laying system developed on a high mobility vehicle and is currently in trials. The Counter-Mine flail, is a vehicle built upon the T-72 chassis and has a series of fast moving flails to destroy mines. A prototype has been displayed.
Naval research and development[edit]
Sonars[edit]
DRDO, BEL and the Indian Navy have developed and productionised a range of sonars and related systems for the Indian Navy's frontline combat ships.


The Shivalik class of frigates contain significant DRDO-developed systems
These include:

  • APSOH (Advanced Panoramic SOnar Hull mounted),
  • HUMVAD (Hull Mounted Variable Depth sonar),
  • HUMSA (Follow on to the APSOH series; the acronym HUMSA stands for Hull Mounted Sonar Array),
  • Nagin (Towed Array Sonar),
  • Panchendriya (Submarine sonar and fire control system).
Other sonars such as the airborne sonar Mihir are in trials, whilst work is proceeding apace on a new generation of sonars. Sonars may be considered one of DRDO's most successful achievements as the Indian Navy's most powerful ships rely on DRDO made sonars. The standard fit for a front line naval ship would include the HUMSA-NG hull mounted sonar and the Nagin towed array sonar. The Mihir is a dunking sonar meant for use by the Naval ALH, working in conjunction with its Tadpole sonobuoy. The Panchendriya is in production for the Kilo class submarine upgrades.[74][75][76]

Torpedoes[edit]
DRDO is currently engaged in developing multiple torpedo designs. These include a lightweight torpedo that has been accepted by the Navy and cleared for production.[77]

Under development[edit]
  • Advanced Light Torpedo Shyena is an advanced experimental torpedo developed by the Naval Scientific and Technological Laboratory (NSTL), a DRDO wing. Development was started in 1990.
  • NSTL Advanced Lightweight Torpedo[78]
  • NSTL Varunastra Heavy Weight Torpedo:[79] The heavy weight wire-guided torpedo called Varunastra and Thakshak thermal torpedo are suitable for use against both ships and submarines. The electrically powered Varunastra is stated to be in production.
The DRDO also developed and productionised a microprocessor controlled triple tube torpedo launcher for the Indian Navy as well as a towed torpedo decoy.[80][81]

Other projects[edit]
These have included indigenisation of various components (for instance, adsorbent material for submarines, radar components, naval ship signature reduction efforts and materials technology). DRDO has played a significant role in the development of warship grade steel in India and its productionisation. DRDO has also assisted private industry in developing EW trainers, ship simulators for training and health monitoring systems for onboard equipment. Other equipment for the Navy includes underwater telephone sets, and VLF communication equipment, for the Navy's submarines. DRDO's IRDE has also developed optronic fire control systems for the Navy's and the Coast Guard's ships.[82]

Information command and control systems[edit]
DRDO's labs have been part of projects to develop sophisticated command and control systems for the Navy, such as the EMCCA (Equipment Modular for Command and Control Application) which ties together various sensors and data systems. The EMCCA system gives commanders on the ship a consolidated tactical picture and adds to the ship's maritime combat power.[83]

DRDO labs are also engaged in supporting the Navy's ambitious naval enterprise wide networking system, a programme to link all naval assets together via datalinks, for sharing tactical information.

Mines and targets[edit]
Three kinds of mines, processor based mine, moored mine and processor based exercise mine are in production for the Navy. Targets developed for the Navy include a static target called the Versatile Acoustic target and a mobile target called the programmable deep mobile target (PDMT).

In development[edit]
  • A Submarine Escape set, used by crew to escape from abandoned submarines. The set consists of breathing apparatus and Hydro-suit.
  • New generation Sonars and EW equipment.
  • Heavyweight torpedoes, underwater remotely operated vehicles, improved signature reduction technology for naval applications.
Missile systems[edit]
Integrated Guided Missile Development Programme (IGMDP)[edit]
Main article: Integrated Guided Missile Development Programme
The IGMDP was launched by the Indian Government to develop the ability to develop and design a missile locally, and manufacture a range of missile systems for the three defence services.

The programme has seen significant success in its two most important constituents - the Agni missiles and the Prithvi missiles, while two other programmes, the Akash SAM and the anti-tank Nag Missile have seen significant orders. The Trishul missile, a programme to develop a tri-service short-range SAM faced persistent problems throughout its development, and was shut down in 2007.

Prithvi ballistic missiles[edit]
Main article: Prithvi (missile)
The Prithvi (Sanskrit: Earth) missiles are a range of SRBMs produced for the Indian Air Force and Army; a variant for the Navy has been deployed on Sukanya class patrol vessel. Another submarine-launched variant known as the K-15 is under development. The Prithvi is an extremely accurate liquid fuelled missile with a range of up to 350 km. While relatively inexpensive and accurate, with a good payload, its logistics footprint is high, on account of it being liquid fuelled.[84]

Agni ballistic missiles[edit]
Main article: Agni (missile)

The Agni-II missile
The Agni (Sanskrit: Fire) ballistic missiles are a range of MRBMs, IRBMs, ICBMs meant for long-range deterrence. The Agni-III is the newest version which is getting inducted into the armed forces and has range of up to 3,500 km (2,175 mi). The Agni-I and Agni-IIhave been productionised, although exact numbers remain classified.

First trials of the Agni-III saw problems and the missile test did not meet its objectives. The second test was successful. Further tests of the Agni-III are planned to validate the missile and its subsystems, which include new propellant and guidance systems, a newreentry vehicle and other improvements.[85]

The Agni-V missile is an Intercontinental ballistic missile meant for long-range deterrence. The Agni-V is the newest version and has the longest range of up to 5000–6000 km. Agni-V would also carry Multiple independently targetable reentry vehicle payloads and will have countermeasures against Anti-ballistic missile systems. It was successfully test fired on 19 April 2012.[86] The missile will utilise a canister and will be launched from it. Sixty percent of the missile will be similar to the Agni-III missile. Advanced technologies like ring laser gyroscope and accelerometer will be used in the new missile.[87] DRDO plans to develop reusable missiles which will be a combination of ballistic and cruise missile technology.[88] During an interview in August 24, 2014, The DRDO chief disclosed the plans of DRDO designing a Long Range ballistic Anti-Ship missile.

Akash SAM[edit]
Main article: Akash (missile)
The Akash (Sanskrit: Sky or ether) is a medium-range surface-to-air missile system consisting of the command guidance ramjet powered Akash along with the dedicated service specific launchers, battery control radar (the Rajendra Block III), a Central Acquisition radar, battery and group control centres.[12].[89] The Akash project has yielded spinoffs like the Central Acquisition radar and Weapon Locating radar.


Akash missile
The Akash system cleared its user trials with the Indian Air Force in 2007. The user trials had the Akash intercept flying targets at ITR, Chandipur. The Akash missile successfully hit its targets in all of the tests.[90] The Indian Air force has since been satisfied with the performance of the missile and ordered two squadrons of the Akash, with a squadron having eight launchers[91][92][93]

The Indian Air Force placed an order for an additional six squadrons of the Akash SAM in 2010, with an order of 750 missiles (125 per squadron). This order makes a total of a 1000 Akash SAMs on order for the Indian Air Force for eight squadrons.[94]

In June 2010, the Defence Acquisition Council (DAC) placed an order of the Akash missile system, valued at 12500 crore(US$1.9 billion). Bharat Dynamics Ltd (BDL) will be the system integrator and nodal production agency for the Akash Army variant.

Trishul SAM[edit]
Main article: Integrated_Guided_Missile_Development_Program § Trishul_missile_system
The Trishul (Sanskrit: Trident, the weapon of Shiva) is a short-range SAM meant for the Indian Army, Air Force and Navy. The Trishul project relied on equipment already in service with the Indian services, to drive down logistics costs, and reduce programme development costs and development time. The Army variant, relied on a locally modified variant of the Signaal (now Thales Electronics) Flycatcher (radar), integrated into a single launcher with a four missile pack, along with separate electronics for missile guidance. The Air Force variant separated the missile launchers on Kolos Tatra trucks, locally manufactured by India's BEML. The Naval variant was the most ambitious, with a flight control system with an integrated radar altimeter to intercept sea skimming missiles. The Trishul's guidance was Command Line of Sight with a three beam guidance system, which proved to be the bane of the project and caused repeated failures during trials.

Due to the Trishul's persistent development problems the Indian Air Force, the Indian Army and the Indian Navy began upgrading their existing short-range SAM systems or purchasing replacements. The Indian Air Force has since procured batteries of the SPYDER SAM system[citation needed] and the Indian Army is upgrading its OSA-AKM/ SA-8systems with Polish assistance.[95] The Indian Navy has also moved on to the Barak 1 system.[96]

The Trishul programme was effectively closed down in 2006. It has been reported that key technologies developed in the programme may be utilised in future systems.[97] It has been reported that the experience gained from the Trishul programme will be utilised for a brand new SAM known as the Maitri, which will be codeveloped with the European MBDA missile agency.[98]

Nag anti-tank missile[edit]
Main article: Nag (missile)
The Nag Anti-tank missile (Sanskrit: Cobra) is a guided missile system intended for the Indian Air Force and the Indian Army. The Army will deploy the Nag on ground based launchers and from helicopters, whereas the Air Force will rely on helicopter based units. The Nag has an Imaging Infrared (IIR) seeker and has a top and direct attack capability, with a tandem warhead.

The Army's land missile carrier and launcher, known as the Namica, carries several ready to use Nag missiles within and four Nag missiles in an extendable launcher above the turret. The Namica has its own FLIR based sighting and fire control unit.[99]


Nag missile
The Air Force and Army will also use their Advanced Light helicopters (ALH) (HAL Dhruv) and the HAL Light Combat Helicopter (LHC) as Nag carriers. The ALHs will be equipped with IRDE (DRDO) developed HELITIS (Heliborne Imaging and Targeting systems) with a combination of a FLIR and laser range finder in a stabilised turret for target acquisition and designation. The thermal imager is likely to be imported, but the gimballed turret, stabilisation, laser range finder and associated electronics have been designed in India and will be manufactured locally.[100]

The Nag ATGM is regarded as a highly capable missile, even though its development has been protracted, mainly due to the technological challenges of developing a state of the art IIR sensor equipped top attack missile. The Nag is still cheaper than most imported missiles in its category and is earmarked for the Army and Air Force.

The Nag anti-tank guided missile was cleared for production in July 2009 and there are uncorroborated reports since that it may be purchased by Tanzania, Botswana and Morocco.[101] The Nag will complement the existing Russian 9M113 Konkurs Anti-tank guided missile and European missile MILAN in Indian usage, both of which are manufactured under licence by Bharat Dynamics Limited.

Brahmos missile[edit]
Main article: BrahMos
Launched as a joint venture between India's DRDO and the Russian NPO, the BrahMos programme aims at creating a range of missile systems derived from the Yakhont missile system. Named the "BrahMos" after the Brahmaputra and the Moskva rivers, the project has been highly successful.
BrahMos
The Indian Navy has ordered the BrahMos Naval version, both slant-launched and vertically launched, for its ships; the Indian Army has ordered two regiments worth of land-launched missiles for long-range strike; and an air-launched version is in development for the Indian Air Force's Su-30 MKIs and the Navy's Tu-142 long-range aircraft.

The DRDO has been responsible for the navigational systems on the BrahMos, aspects of its propulsion, airframe and seeker, plus its Fire Control Systems, Mobile Command posts and Transporter Erector Launcher.[102][103]

Main article: BrahMos-II
The hypersonic Brahmos 2 is to be developed as a follow on to the original Brahmos. The missile would still follow the guidelines of theMTCR but would fly at speeds of 5-7 Mach.

BrahMos I Block-III

An upgraded version of the 290 km range BrahMos supersonic cruise missile was successfully test fired by India on 2 December 2010 from Integrated Test Range (ITR) at Chandipur off the Orissa coast.

"Block III version of BrahMos with advanced guidance and upgraded software, incorporating high manoeuvres at multiple points and steep dive from high altitude was flight tested successfully from Launch Complex III of ITR," its Director S P Dash said after the test fire from a mobile launcher at 1100 hours. The 8.4-metre missile which can fly at 2.8 times the speed of sound is capable of carrying conventional warheads of up to 300 kg for a range of 290 km.

It can effectively engage ground targets from an altitude as low as 10 metres for surgical strikes at terror training camps across the border without causing collateral damage. BrahMos is capable of being launched from multiple platforms like submarine, ship, aircraft and land based Mobile Autonomous Launchers (MAL). The Block III BrahMos has the capability of scaling mountain terrain and can play a vital role in precision strike in the northern territories. The advanced cruise missile can fly close to the rough geographies and kill the target[104] A five-year development timeframe is anticipated.[105]

Shaurya[edit]
Main article: Shaurya (missile)
The Shaurya missile (Sanskrit: Valor) is a canister-launched hypersonic surface-to-surface tactical missile developed by the Indian Defence Research and Development Organisation (DRDO) for use by the Indian Armed Forces. Similar to the BrahMos, Shaurya is stored in composite canisters, which makes it much easier to store for long periods without maintenance as well as to handle and transport. It also houses the gas generator to eject the missile from the canister before its solid propellant motors take over to hurl it at the intended target.

Shaurya missiles can remain hidden or camouflaged in underground silos from enemy surveillance or satellites till they are fired from the special storage-cum-launch canisters. The Shaurya system will require some more tests before it becomes fully operational in two-three years. Moreover, defence scientists say the high-speed, two-stage Shaurya has high maneuverability which also makes it less vulnerable to existing anti-missile defence systems.

It can be easily transported by road. The missile, encased in a canister, is mounted on a single vehicle, which has only a driver's cabin, and the vehicle itself is the launch platform. This "single vehicle solution" reduces its signature – it cannot be easily detected by satellites – and makes its deployment easy. The gas generator, located at the bottom of the canister produces high pressure gas, which expands and ejects the missile from the tube.

The centrepiece of a host of new technologies incorporated in Shaurya is its ring laser gyroscope (RLG) and accelerometer. The indigenous ring laser gyroscope, a sophisticated navigation and guidance system developed by the Research Centre Imarat (RCI) based in Hyderabad is a highly classified technology.

In test flights the RLG functioned exceptionally well. the RLG monitors the missile's position in space when it is flying. The missile's on-board computer will use this information and compare it with the desired position. Based on the difference between the missile's actual and desired positions, the computer will decide the optimum path and the actuators will command the missile to fly in its desired/targeted position. The third test of the RLG was successful on 24 September 2011, reaching a speed of 7.5 mach. It is now ready for production.

Sagarika[edit]
Main article: Sagarika (missile)
The K-15 Sagarika is a nuclear-capable submarine-launched ballistic missile belonging to the K Missile family with a range of 750 kilometres (466 mi). Sagarika can carry a payload of up to 500 kilograms (1,102 lb). Sagarika was developed at the DRDO's missile complex in Hyderabad.

This missile will form part of the triad in India's nuclear deterrence, and will provide retaliatory nuclear strike capability. The development of this missile (under the title Project K-15) started in 1991. The Indian government first confirmed Sagarika's development seven years later (1998), when the then Defence Minister, George Fernandes, announced it during a press conference.

The development of the underwater missile launcher, known as Project 420 (P420), was completed in 2001 and handed over to the Indian Navy for trials. The missile was successfully test fired six times, and tested to its full range up to three times. The test of missile from a submerged pontoon was conducted in February 2008.

Sagarika is being integrated with India's nuclear-powered Arihant class submarines that began sea trials on 26 July 2009.

Sudarshan[edit]
Main article: Sudarshan laser-guided bomb
India's first laser-guided bomb, Sudarshan is the latest weapon system developed indigenously to occupy the niche of a precision delivery mechanism. It can be fitted to a 1000-pound gravity bomb and can guide it to the target using lasers with a CEP (Circular Error Probability) of 10 metres.

Prahaar Missile[edit]
Main article: Prahaar (missile)
Prahaar is a solid-fueled surface-to-surface guided short-range tactical ballistic missile developed by DRDO of India. It would be equipped with omni-directional warheads and could be used for hitting both tactical and strategic targets. It has a range of about 150 km. It was test-fired successfully on 21 July 2011 from the Integrated Test Range (ITR) at Chandipur.[106]

Plans[edit]
Long-range SAM[edit]
Main article: Barak 8 (missile)
India and Israel have worked out an agreement to develop and produce the long-range Barak 8 air defence system for both the Indian and the Israeli militaries. The initial co-development funding is about US$350 million, of which IAI will finance 50 per cent. The venture is a tripartite one, between the DRDO, the Indian Navy, and IAI. The missile is referred to as the LRSAM in Indian Government literature, and will have a range of 72 km (45 mi).[107][108] Israel Aircraft Industries refers to the system as Barak-8. IAI states that the missile will have a dual pulse motor, is vertically launched and is able to engage both aircraft and sea skimming missiles. It has a fully active seeker, and the Barak-8 Weapons system is capable of multiple simultaneous engagements. It will have a two way datalink for midcourse update, as well as be able to integrate into larger C3I networks. The primary fire control sensor for the naval Barak-8/LRSAM will be the ELTA MF-STAR Naval AESA radar which Israel claims to be superior to many existing systems worldwide.[109][110][111] The dual pulse rocket motor for the SAM was developed by DRDO, and the prototypes were supplied to IAI for integration with IAI systems to develop the complete missile.

The other variant of the LRSAM will be fielded by the Indian Air Force. Along with the Akash SAM, the LRSAM fills a longer range requirement and both types will complement each other. Each unit of the MR-SAM would consist of a command and control centre, with an acquisition radar, a guidance radar and 3 launchers with eight missiles each.

A 4-year, US$300 million System Design & Development phase to develop unique system elements and an initial tranche of the land-based missiles is estimated. The radars, C2 centres, TEL's and missiles will be codeveloped by Israel and India. In turn, IAI and its Israeli partners have agreed to transfer all relevant technologies and manufacturing capabilities to India allowing India to manufacture the LRSAM systems locally as well as support them. [112] The Barak-8 next generation long-range surface-to-air missile (LR-SAM) had its first test-flight on 29 May 2010.

Astra BVRAAM[edit]
Main article: Astra (missile)
Astra is a 80 km (50 mi) class, active radar homing air-to-air missile meant for beyond-visual-range missile combat. Several tests of the missiles basic propulsion and guidance have taken place from land based launchers. Air-launched trials will follow thereafter.[113]

Lightweight launcher

DRDO has developed an indigenous 7 kg lightweight rocket launcher for the Indian army which will replace the 14 kg Carl Gustav Mark-II launcher which is much heavier than the DRDO-developed rocket launcher. The DRDO has made extensive use of composites in its construction, resulting in the reduced weight.[114]

Anti-Ballistic Missile Defence Project[edit]
Main article: Indian Ballistic Missile Defence Programme
Unveiled in 2006, the ABM project was a surprise to many observers. While DRDO had revealed some details about the project over the years, its progress had been marked by strict secrecy, and the project itself was unlisted, and not visible among DRDO's other programmes. The ABM project has benefited from all the incremental improvements achieved by the DRDO and its associated industrial partners via the long-running and often contentious Akash missile and Trishul missile programmes. However, it is a completely new programme, with much larger scope and with predominantly new subsystems.


Prithvi Air Defence
The ABM project has two missiles—namely the AAD (Advanced Air Defence) and PAD (Prithvi Air Defence) missiles. The former is an endo-atmospheric interceptor of new design, which can intercept targets to a height of 30 km (19 mi). Whereas the latter is a modified Prithvi missile, dubbed the Axo-atmospheric interceptor (AXO) with a dedicated second stage kill vehicle for ballistic missile interception, up to an altitude of 80 km (50 mi).

Both these missiles are cued by an active phased array Long Range Tracking Radar, similar to the Elta GreenPine but made with locally developed components, which include DRDO-developed transmit/receive modules. The ABM system also makes use of a second radar, known as the Multi-Function Control Radar which assists the LRTR in classifying the target, and can also act as the fire control radar for the AAD missile. The MFCR, like the LRTR is an active phased array system.

The entire system was tested in November 2006, under the Prithvi Air Defence Exercise, when a prototype AXO missile, successfully intercepted another Prithvi missile at a height of 50 km (31 mi). This test was preceded by an "electronic test" in which an actual target missile was launched, but the entire interceptor system was tested electronically, albeit no actual interceptor was launched. This test was successful in its entirety.

The AAD Missile was tested on December 2007 which successfully intercepted a modified Prithvi missile simulating the M-9 and M-11 class of ballistic missiles. Interception happened at an altitude of 15 km (9 mi).[115]

GATET engine[edit]
The Defence Research and Development Organisation (DRDO) has launched a 100 crore (US$15.6 million) project in R&D in the area of gas turbines, a DRDO official said on April 2010. Under the initiative of DRDO's Aeronautics Research and Development Board, R&D projects, which need investment in the region of 50 lakh (US$77,992.00) to5 crore (US$779,920.00), would be considered for funding. GTRE was the nodal agency to spearhead this venture, called GATET[116][117][118]

Anti-satellite weapon[edit]
Main article: Anti-satellite weapon § India
After testing the over 5,000 km Agni V missile, which went up to 600 km into space during its parabolic trajectory, the Defence Research and Development Organisation (DRDO) now feels it can fashion deadly anti-satellite (ASAT) weapons in double-quick time. "An ASAT weapon would require to reach about 800 km altitude... Agni V gives you the boosting capability and the 'kill vehicle', with advanced seekers, will be able to home into the target satellite, DRDO chief, VK Saraswat said.[119] The defence ministry in 2010 had even drafted a 15-year "Technology Perspective and Roadmap", which held development of ASAT weapons "for electronic or physical destruction of satellites in both LEO (2,000-km altitude above earth's surface) and the higher geosynchronous orbit" as a thrust area in its long-term integrated perspective plan under the management of DRDO.[120]

Consequently, defence scientists are focusing on "space security" to protect India's space assets from electronic or physical destruction. Another spin-off from Agni V test is that the DRDO feels it can work towards launching mini-satellites for battlefield use if an adversary attacks the country's main satellites.[119]

Communication-Centric Intelligence Satellite (CCI-Sat)[edit]
Communication-Centric Intelligence Satellite is an advanced reconnaissance satellite, being developed by DRDO. It will be India's first officially declared spy satellite and according to ISRO it should be in the sky by 2014.[121] This satellite will help Indian intelligence agencies to significantly boost surveillance of terror camps in neighbouring countries.

My first and last reply for you - now kindly go and fcuk yourself please! :coffee:
 

Pakistan Affairs Latest Posts

Back
Top Bottom