What's new

All about GSLV

SOHEIL

ELITE MEMBER
Joined
Dec 9, 2011
Messages
15,796
Reaction score
-6
Country
Iran, Islamic Republic Of
Location
Iran, Islamic Republic Of
Geosynchronous Satellite Launch Vehicle (GSLV)

300px-Indian_Space_Research_Organisation_Logo.svg.png

GSLV was declared operational (GSLV Mk.1) after both its developmental test flights conducted in April 2001 and May 2003 were successful. In its first operational flight, GSLV-F01, successfully launched the 1,950 kg G-SAT 3 on September 20, 2004.
In its present configuration, the 49 metre tall, 414 tonne, GSLV is a three stage vehicle. The first stage, GS1, comprises a core motor with 138 tonne of solid propellant and four strap-on motors each with 40 tonne of hypergolic liquid propellants (UH25 and N204). The second stage has 39 tonne of the same hypergolic liquid propellants. The third stage (GS3) is a cryogenic stage with 12.5 tonne of Liquid Oxygen (LOX) and Liquid Hydrogen (LH2). The Aluminum alloy GSLV payload fairing is 3.4 m in diameter and is 7.8 m long.

The GSLV (Geosynchronous Satellite Launch Vehicle) uses lower stage closely derived from the PSLV, with a new cryogenic third stage replacing the third and fourth stage of PSLV. In place of small solid strap-on boosters used in the PSLV, the GSLV uses four liquid boosters that are derived from the PSLV second stage. The same solid first stage and liquid second stage are carried over from the PSLV. The third stage is a cryogenic hydrogen/oxygen upper stage. Seven stage are manufactured by Khrunishev/Russia. The GSLV payload fairing is made of aluminium and is manufactured by Hindustan Aeronautics.

The three-axis attitude (orientation) stabilisation of GSLV is achieved by autonomous control systems provided in each stage. Single plane Engine Gimbal Control (EGC) of the four strap-ons of the first stage are used for pitch, yaw and roll control. The second stage has EGC for pitch and yaw and hot gas Reaction Control System (RCS) for roll control. Two swivellable vernier engines using LH2 and LOX provide pitch, yaw and roll control for the third stage during thrust phase and cold gas system during coast phase. The Inertial Guidance System (IGS) in the Equipment Bay (EB) housed above the third stage guides the vehicle till spacecraft injection. The closed loop guidance scheme resident in the on-board computer ensures the required accuracy in the injection conditions. GSLV employs S-band telemetry and C-band transponders for the vehicle performance monitoring, tracking, range safety/flight safety and Preliminary Orbit Determination (POD).
GSLV employs various separation systems such as Flexible Linear Shaped Charge (FLSC) for the first stage, pyro-actuated collet release mechanism for second stage and Merman band bolt cutter separation mechanism for the third stage. Spacecraft separation is by spring thrusters mounted at the separation interface.
The third stage of GSLV is cryogenic. The initial flights of GSLV (GSLV Mk.1) use Russian supplied cryogenic stage. CUSP envisages design and development of the indigenous cryogenic upper stage to replace the Russian supplied cryogenic stage in GSLV (GSLV Mk.2).

India's PSLV & GSLV:

SLV_big.jpg

Fairings (GSLV & PSLV):

GSLVPSLV.jpg
 
gslv_41big.jpg


gslv_41a.jpg

GSLV-F06 with new 4-m fairing and G-SAT 5P

gslv_40big.jpg

GSLV-F04 with Insat-4CR

gslv_5big.jpg

The third stage 12KRB

gslv_31big.jpg

Third stage 12KRB with russian engine KVD-1

gslv_29big.jpg

12KRB

gslv_28big.jpg

Lower segment of first stage with nozzle

gslv_34big.jpg

VIKAS-booster

gslv_12big.jpg

Vikas second stage
 
Last edited:
Did you know that these boosters are almost as big as commercial jets? It's actually a massive machine!

Are you sure !?

GS-0 (L-42)
gslv_34big.jpg

Length m 19.70
Diameter m 2.10
Liftoff weight t 188.00
Propellant weight t 168.00
Engines Vikas 2+
Propellant UH25/N2O4
Total thrust (s.l.) kN 2,710.8
Specific impulse (s.l.) N*s/kg 2501
Burn time s 155
Total impulse (vac) MN*s 474.5

 
Are you sure !?

GS-0 (L-42)
gslv_34big.jpg

Length m 19.70
Diameter m 2.10
Liftoff weight t 188.00
Propellant weight t 168.00
Engines Vikas 2+
Propellant UH25/N2O4
Total thrust (s.l.) kN 2,710.8
Specific impulse (s.l.) N*s/kg 2501
Burn time s 155
Total impulse (vac) MN*s 474.5

I read it in a report!
 
Back
Top Bottom