The SC
ELITE MEMBER
- Joined
- Feb 13, 2012
- Messages
- 32,233
- Reaction score
- 21
- Country
- Location
Unearthing a New Quantum State of Matter: Quantum Physics Discoveries Could Change Face of Technology .
From that research, a surprising topological semimetal has emerged.
"We never expected a result like this based on previous studies," said Liu. "We were surprised to find that such a simple system could reveal itself as a new type of topological state -- an insulator that shares the same properties as a quantum Hall state in solid materials."
Since the discovery of the quantum Hall effect by Klaus Van Klitzing in 1985, researchers like Liu have been particularly interested in studying topological states of matter, that is, properties of space unchanged under continuous deformations or distortions such as bending and stretching. The quantum Hall effect proved that when a magnetic field is applied perpendicular to the direction a current is flowing through a metal, a voltage is developed in the third perpendicular direction. Liu's work has yielded similar yet remarkably different results.
"This new quantum state is very reminiscent of quantum Hall edge states," said Liu. "It shares the same surface appearance, but the mechanism is entirely different: This Hall-like state is driven by interaction, not by an applied magnetic field."
Liu and his collaborators have come up with a specific experimental design of optical lattices and tested the topological semimetal state by loading very cold atoms onto this "checkerboard" lattice. Generally, these tests result in two or more domains with opposite orbital currents; therefore the angular momentum remains at zero. However, in Liu's study, the atoms formed global rotations, which broke time-reversal symmetry: The momentum was higher, and the currents were not opposite.
"By studying these orbital degrees of freedom, we were able to discover liquid matter that had no origins within solid-state electronic materials," said Liu.
Liu says this liquid matter could potentially lead toward topological quantum computers and new quantum devices for topological quantum telecommunication. Next, he and his team plan to measure quantities for a cold-atom system to check these predicted quantum-like properties.
Unearthing a new quantum state of matter: Quantum physics discoveries could change face of technology
From that research, a surprising topological semimetal has emerged.
"We never expected a result like this based on previous studies," said Liu. "We were surprised to find that such a simple system could reveal itself as a new type of topological state -- an insulator that shares the same properties as a quantum Hall state in solid materials."
Since the discovery of the quantum Hall effect by Klaus Van Klitzing in 1985, researchers like Liu have been particularly interested in studying topological states of matter, that is, properties of space unchanged under continuous deformations or distortions such as bending and stretching. The quantum Hall effect proved that when a magnetic field is applied perpendicular to the direction a current is flowing through a metal, a voltage is developed in the third perpendicular direction. Liu's work has yielded similar yet remarkably different results.
"This new quantum state is very reminiscent of quantum Hall edge states," said Liu. "It shares the same surface appearance, but the mechanism is entirely different: This Hall-like state is driven by interaction, not by an applied magnetic field."
Liu and his collaborators have come up with a specific experimental design of optical lattices and tested the topological semimetal state by loading very cold atoms onto this "checkerboard" lattice. Generally, these tests result in two or more domains with opposite orbital currents; therefore the angular momentum remains at zero. However, in Liu's study, the atoms formed global rotations, which broke time-reversal symmetry: The momentum was higher, and the currents were not opposite.
"By studying these orbital degrees of freedom, we were able to discover liquid matter that had no origins within solid-state electronic materials," said Liu.
Liu says this liquid matter could potentially lead toward topological quantum computers and new quantum devices for topological quantum telecommunication. Next, he and his team plan to measure quantities for a cold-atom system to check these predicted quantum-like properties.
Unearthing a new quantum state of matter: Quantum physics discoveries could change face of technology