What's new

IBM and Samsung say their new chip design could lead to week-long battery life on phones

F-22Raptor

ELITE MEMBER
Joined
Jun 19, 2014
Messages
16,980
Reaction score
3
Country
United States
Location
United States
IBM and Samsung have announced their latest advance in semiconductor design: a new way to stack transistors vertically on a chip (instead of lying flat on the surface of the semiconductor).

The new Vertical Transport Field Effect Transistors (VTFET) design is meant to succeed the current FinFET technology that’s used for some of today’s most advanced chips and could allow for chips that are even more densely packed with transistors than today. In essence, the new design would stack transistors vertically, allowing for current to flow up and down the stack of transistors instead of the side-to-side horizontal layout that’s currently used on most chips.

Vertical designs for semiconductors have been a trend for a while (FinFET already offers some of those benefits); Intel’s future roadmap also looks to move in that direction, too, although its initial work focused on stacking chip components rather than individual transistors. It makes sense, after all: when you’ve run out of ways to add more chips in one plane, the only real direction (other than physically shrinking transistor technology) is to go up.


While we’re still a ways away from VTFET designs being used in actual consumer chips, the two companies are making some big claims, noting that VTFET chips could offer a “two times improvement in performance or an 85 percent reduction in energy use” compared to FinFET designs. And by packing more transistors into chips, IBM and Samsung claim that VTFET technology could help keep Moore’s law’s goal of steadily increasing transistor count moving forward.

IBM and Samsung are also citing some ambitious possible use cases for the new technology, raising the idea of “cell phone batteries that could go over a week without being charged, instead of days,” less energy-intensive cryptocurrency mining or data encryption, and even more powerful IoT devices or even spacecraft.


IBM has previously shown off its first 2nm chipearlier this year, which takes a different route toward cramming more transistors by scaling up the amount that can be fit onto a chip using the existing FinFET design. VTFET would aim to take things further, however, although it’ll likely be even longer before we see chips based on IBM and Samsung’s latest technology out in the world.

It’s not the only company looking to the future of production, either. Intel previewed its upcoming RibbonFET (Intel’s first gate-all-around transistor) design over the summer, its own successor to FinFET production technology, which is set to be part of the Intel 20A generation of semiconductor products scheduled to start ramping production in 2024. The company also recently announced its own plan for stacked transistor technology as a potential successor for RibbonFET in the future, too.

https://www.theverge.com/platform/a...ncement-battery-life-smartphone-semiconductor
 
IBM keep pronouncing breakthrough on semiconductor field in past decades. I have good memories on this because of my profession.

But in ground reality, IBM is out of semiconductor for too many years, if not decades.

IBM has some research, but that's about it.
 
IBM keep pronouncing breakthrough on semiconductor field in past decades. I have good memories on this because of my profession.

But in ground reality, IBM is out of semiconductor for too many years, if not decades.

IBM has some research, but that's about it.

ALBANY, N.Y., May 6, 2021 /PRNewswire/ -- IBM (NYSE: IBM) today unveiled a breakthrough in semiconductor design and process with the development of the world's first chip announced with 2 nanometer (nm) nanosheet technology. Semiconductors play critical roles in everything from computing, to appliances, to communication devices, transportation systems, and critical infrastructure.

Demand for increased chip performance and energy efficiency continues to rise, especially in the era of hybridcloud, AI, and the Internet of Things. IBM's new 2 nm chip technology helps advance the state-of-the-art in the semiconductor industry, addressing this growing demand. It is projected to achieve 45 percent higher performance, or 75 percent lower energy use, than today's most advanced 7 nm node chipsi.

The potential benefits of these advanced 2 nm chips could include:

  • Quadrupling cell phone battery life, only requiring users to charge their devices every four daysii.
  • Slashing the carbon footprint of data centers, which account for one percent of global energy useiii. Changing all of their servers to 2 nm-based processors could potentially reduce that number significantly.
  • Drastically speeding up a laptop's functions, ranging from quicker processing in applications, to assisting in language translation more easily, to faster internet access.
  • Contributing to faster object detection and reaction time in autonomous vehicles like self-driving cars.
"The IBM innovation reflected in this new 2 nm chip is essential to the entire semiconductor and IT industry," said Darío Gil, SVP and Director of IBM Research. "It is the product of IBM's approach of taking on hard tech challenges and a demonstration of how breakthroughs can result from sustained investments and a collaborative R&D ecosystem approach."

IBM at the forefront of semiconductor innovation
This latest breakthrough builds on decades of IBM leadership in semiconductor innovation. The company's semiconductor development efforts are based at its research lab located at the Albany Nanotech Complex in Albany, NY, where IBM scientists work in close collaboration with public and private sector partners to push the boundaries of logic scaling and semiconductor capabilities.

This collaborative approach to innovation makes IBM Research Albany a world-leading ecosystem for semiconductor research and creates a strong innovation pipeline, helping to address manufacturing demands and accelerate the growth of the global chip industry.

IBM's legacy of semiconductor breakthroughs also includes the first implementation of 7 nm and 5 nm process technologies, single cell DRAM, the Dennard Scaling Laws, chemically amplified photoresists, copper interconnect wiring, Silicon on Insulator technology, multi core microprocessors, High-k gate dielectrics, embedded DRAM, and 3D chip stacking. IBM's first commercialized offering including IBM Research 7 nm advancements will debut later this year in IBM POWER10-based IBM Power Systems.

50 billion transistors on a fingernail-sized chip
Increasing the number of transistors per chip can make them smaller, faster, more reliable, and more efficient. The 2 nm design demonstrates the advanced scaling of semiconductors using IBM's nanosheet technology. Its architecture is an industry first. Developed less than four years after IBM announced its milestone 5 nm design, this latest breakthrough will allow the 2 nm chip to fit up to 50 billion transistors on a chip the size of a fingernail.

More transistors on a chip also means processor designers have more options to infuse core-level innovations to improve capabilities for leading edge workloads like AI and cloud computing, as well as new pathways for hardware-enforced security and encryption. IBM is already implementing other innovative core-level enhancements in the latest generations of IBM hardware, like IBM POWER10 and IBM z15.

https://newsroom.ibm.com/2021-05-06...gy,-Opening-a-New-Frontier-for-Semiconductors
 
Apple M1's are really good, I get around 8-10 hours on my Air M1.
If mobile phones can replicate similar performance, I don't see a reason why 1 week of battery life should not be the norm.
 
Week long battery life?

nintchdbpict000305168568.jpg
 
Apple M1's are really good, I get around 8-10 hours on my Air M1.
If mobile phones can replicate similar performance, I don't see a reason why 1 week of battery life should not be the norm.

Same here with MacBook Pro...their new laptops are amazing.
 
If battery life is the concern then people should be eagerly waiting for the under-development nuclear-reaction-waste-enabled battery NDB ( Nano Diamond Battery ) which the company says will power portable computers for nine years ( ! ) instead of the week for this probably lithium-ion powered IBM+Samsung chip.

Also, @fitpOsitive, do you think this IBM-Samsung experiment will be used in radiation-drenched space applications, with all those densely-packed regular transistors sitting on top of each other ?
 
Back
Top Bottom