Srinivas
ELITE MEMBER
- Joined
- Sep 20, 2009
- Messages
- 12,455
- Reaction score
- -26
- Country
- Location
18 Indian Minds Who Are Doing Cutting Edge Work
The wheels have been set in motion to win back some of the finest minds of Indian origin to align forces with their country of origin
1. Chaitan Khosla
He developed a treatment for celiac sprue, a disease that affects many in India. His work in biodiesel is globally significant too.
Profile: He is chair, chemical engineering; Wells H. Rauser and Harold M. Petiprin Professor in the School of Engineering; Professor of Chemical Engineering, Chemistry, and Biochemistry at Stanford University.
His Main Area of Work: His research lies at the intersection of chemistry and medicine. He has been working with genetically modified soil bacteria to develop new medicines (called polyketides) to treat cancer, infections, and other diseases.
In 1995, he co-founded biotechnology company Kosan Biosciences, which was acquired by drug maker Bristol Myers Squibb in 2008. Later, he founded Alvine Pharmaceuticals, which is developing an oral enzyme drug discovered in his laboratory for the treatment of celiac sprue—an autoimmune disorder, triggered by gluten in cereals, that affects the small intestines.
Yet another company he’s founded, Flamentera AG, is focussed on developing novel biomarkers for gastrointestinal diseases.
In September 2011, he and his research team found that high volumes of biodiesel can be produced from bacteria where E. coli can be used as a catalyst. Khosla and his team are currently trying to find ways to enhance its cellular controls to push this further.
How His Research Can Benefit India: A decade ago, one in 1,000 of the population were affected by celiac sprue but the occurrence has increased. Today, one in 310 people in India are affected by the disease and one in 120-300 of the population in Europe and North America.
His work in biodiesel is globally significant too. If successful, his work could help propel biodiesel to a commercial market from the niche space it occupies now.
What They Say About Him: “Khosla can tackle huge challenges and makes strong efforts to move forward. With celiac disease, there was an unmet medical need with no treatment except a lifelong gluten free diet at the time he stepped in. He has showed a strong commitment to do something about this,” says Ludvig M. Sollid, director, Center for Immune Regulation, Research Council of Norway.
(Nilofer D’Souza)
2. Krishna Palem
He has deviced a new microchip that uses less energy; also, his solar-powered notepad, iSlate, is being tested in India
Profile: He is head of the Rice-NTU Institute for Sustainable and Applied Infodynamics (ISAI), Singapore.
His Main Area of Work: His research is focussed on embedded computing, including low-energy computing and nanoelectronics. He’s pioneered a “pruned” microchip technology. An “inexact hardware” that drastically reduces power demands of microprocessors by allowing them to make mistakes, it is the harbinger of the next-generation power-stingy processors. Called probabilistic pruning, this technology makes the integrated circuits perform twice as fast, use half as much energy, and occupy half the space of the traditional circuits. This, says Krishna, is done by cleverly managing the “probability of errors and limiting which calculations produce errors”.
While doing this Palem has showed that the energy consumed by a computation could be traded for its accuracy. For applications such as digital image and video processing or cryptography, such integrated circuits can be designed to produce results to only the required accuracy, and therefore, the power needed for the computation can be drastically reduced.
How His Research Can Benefit India: Along with his team, he is creating a complete prototype chip for a specific application, a hearing aid to begin with. He has developed a solar powered iSlate, an electronic notepad, which is currently being tested in schools in Mohd. Hussainpalli village in Andhra Pradesh. In its 125th anniversary, IEEE recognised his PCMOS technology and iSlate as one of the seven “world changing technologies”.
What They Say About Him: “An unwavering theme of his vision has been to address the principal challenges to sustaining the performance and economic benefits of Moore’s Law. With probabilistic CMOS technology, he has perhaps shown the most profoundly original approach to tackling the barriers of power consumption and noise immunity in the continuation of the decades-long exponential improvement in the area and speed of the integrated circuits, known as the Moore’s Law,” says Moshe Y. Vardi, director of the Ken Kennedy Institute for Information Technology at Rice University.
(Seema Singh)
FEATURES/INNOVATION SPECIAL | Mar 3, 2012 | 40011 views
18 Indian Minds Who Are Doing Cutting Edge Work
by Seema Singh
The wheels have been set in motion to win back some of the finest minds of Indian origin to align forces with their country of origin
1354 200
+ Comment now Email Print
1. Chaitan Khosla
He developed a treatment for celiac sprue, a disease that affects many in India. His work in biodiesel is globally significant too.
Profile: He is chair, chemical engineering; Wells H. Rauser and Harold M. Petiprin Professor in the School of Engineering; Professor of Chemical Engineering, Chemistry, and Biochemistry at Stanford University.
His Main Area of Work: His research lies at the intersection of chemistry and medicine. He has been working with genetically modified soil bacteria to develop new medicines (called polyketides) to treat cancer, infections, and other diseases.
In 1995, he co-founded biotechnology company Kosan Biosciences, which was acquired by drug maker Bristol Myers Squibb in 2008. Later, he founded Alvine Pharmaceuticals, which is developing an oral enzyme drug discovered in his laboratory for the treatment of celiac sprue—an autoimmune disorder, triggered by gluten in cereals, that affects the small intestines.
Yet another company he’s founded, Flamentera AG, is focussed on developing novel biomarkers for gastrointestinal diseases.
In September 2011, he and his research team found that high volumes of biodiesel can be produced from bacteria where E. coli can be used as a catalyst. Khosla and his team are currently trying to find ways to enhance its cellular controls to push this further.
How His Research Can Benefit India: A decade ago, one in 1,000 of the population were affected by celiac sprue but the occurrence has increased. Today, one in 310 people in India are affected by the disease and one in 120-300 of the population in Europe and North America.
His work in biodiesel is globally significant too. If successful, his work could help propel biodiesel to a commercial market from the niche space it occupies now.
What They Say About Him: “Khosla can tackle huge challenges and makes strong efforts to move forward. With celiac disease, there was an unmet medical need with no treatment except a lifelong gluten free diet at the time he stepped in. He has showed a strong commitment to do something about this,” says Ludvig M. Sollid, director, Center for Immune Regulation, Research Council of Norway.
(Nilofer D’Souza)
2. Krishna Palem
He has deviced a new microchip that uses less energy; also, his solar-powered notepad, iSlate, is being tested in India
Profile: He is head of the Rice-NTU Institute for Sustainable and Applied Infodynamics (ISAI), Singapore.
His Main Area of Work: His research is focussed on embedded computing, including low-energy computing and nanoelectronics. He’s pioneered a “pruned” microchip technology. An “inexact hardware” that drastically reduces power demands of microprocessors by allowing them to make mistakes, it is the harbinger of the next-generation power-stingy processors. Called probabilistic pruning, this technology makes the integrated circuits perform twice as fast, use half as much energy, and occupy half the space of the traditional circuits. This, says Krishna, is done by cleverly managing the “probability of errors and limiting which calculations produce errors”.
While doing this Palem has showed that the energy consumed by a computation could be traded for its accuracy. For applications such as digital image and video processing or cryptography, such integrated circuits can be designed to produce results to only the required accuracy, and therefore, the power needed for the computation can be drastically reduced.
How His Research Can Benefit India: Along with his team, he is creating a complete prototype chip for a specific application, a hearing aid to begin with. He has developed a solar powered iSlate, an electronic notepad, which is currently being tested in schools in Mohd. Hussainpalli village in Andhra Pradesh. In its 125th anniversary, IEEE recognised his PCMOS technology and iSlate as one of the seven “world changing technologies”.
What They Say About Him: “An unwavering theme of his vision has been to address the principal challenges to sustaining the performance and economic benefits of Moore’s Law. With probabilistic CMOS technology, he has perhaps shown the most profoundly original approach to tackling the barriers of power consumption and noise immunity in the continuation of the decades-long exponential improvement in the area and speed of the integrated circuits, known as the Moore’s Law,” says Moshe Y. Vardi, director of the Ken Kennedy Institute for Information Technology at Rice University.
(Seema Singh)
3. Rakesh Agrawal
He is working on efficient and cheap energy production from renewable sources such as solar and biomass.
Profile: He is Winthrop E. Stone Distinguished Professor of Chemical Engineering at Purdue University.
His Main Area of Work: Imagine being able to print out a solar panel on a flexible substrate; to be able to spray-on a low-cost nanocrystal coating and assemble a thin film solar plant wherever power is needed. If Agrawal has his way, this dream may well be reality one day. He is working on two types of nanocrystals: Copper indium gallium selenide (CIGS), and Copper zinc tin sulfide (CZTS). His team has managed to reach 12.5 percent efficiency with CIGS, which is pretty close to what you get with silicon solar cells. CZTS has only 8.4 percent efficiency, but utilises earth-abundant materials which will decrease the cost as efficiency increases.
He is also looking for an efficient way to convert biomass to liquid fuel (like diesel) that can be used in transportation (which uses up about half the fossil fuel produced worldwide).
His Approach: Thin-film technologies have made photovoltaic materials more competitive, but costs need to reduce further. Agrawal’s aims to bring it below 50 cents/peak watt. US solar panel maker First Solar is currently the lowest cost producer of thin films at 74 cents/peak watt. Agrawal’s approach is to utilise nanomaterials that can be suspended in appropriate solvents and then deposited utilising high throughput capabilities. He hopes to commercialise the systems when he achieves efficiencies of about 15 percent.
How His Research Can Benefit India: India is grappling with huge energy shortages. If solar cells become cheaper and more easily available, it can change the dynamics of power production and availability in the country.
What Others Say About Him: “Agrawal has been developing what are called ‘ink based’ precursors to make the thin film solar cells of either CIGS or CZTS. The highest efficiencies reported for CZTSSe (Copper Zinc Tin Sulfo-selenide) has been about 10 percent. There appears, at this point, no fundamental reason why it should not be possible to exceed 15 percent efficiencies,” says Supratik Guha, director, Physical Sciences Department, IBM Thomas J. Watson Research Center.
(Cuckoo Paul)
(contd ......)
http://forbesindia.com/article/inno...minds-who-are-doing-cutting-edge-work/32312/0
The wheels have been set in motion to win back some of the finest minds of Indian origin to align forces with their country of origin
1. Chaitan Khosla
He developed a treatment for celiac sprue, a disease that affects many in India. His work in biodiesel is globally significant too.
Profile: He is chair, chemical engineering; Wells H. Rauser and Harold M. Petiprin Professor in the School of Engineering; Professor of Chemical Engineering, Chemistry, and Biochemistry at Stanford University.
His Main Area of Work: His research lies at the intersection of chemistry and medicine. He has been working with genetically modified soil bacteria to develop new medicines (called polyketides) to treat cancer, infections, and other diseases.
In 1995, he co-founded biotechnology company Kosan Biosciences, which was acquired by drug maker Bristol Myers Squibb in 2008. Later, he founded Alvine Pharmaceuticals, which is developing an oral enzyme drug discovered in his laboratory for the treatment of celiac sprue—an autoimmune disorder, triggered by gluten in cereals, that affects the small intestines.
Yet another company he’s founded, Flamentera AG, is focussed on developing novel biomarkers for gastrointestinal diseases.
In September 2011, he and his research team found that high volumes of biodiesel can be produced from bacteria where E. coli can be used as a catalyst. Khosla and his team are currently trying to find ways to enhance its cellular controls to push this further.
How His Research Can Benefit India: A decade ago, one in 1,000 of the population were affected by celiac sprue but the occurrence has increased. Today, one in 310 people in India are affected by the disease and one in 120-300 of the population in Europe and North America.
His work in biodiesel is globally significant too. If successful, his work could help propel biodiesel to a commercial market from the niche space it occupies now.
What They Say About Him: “Khosla can tackle huge challenges and makes strong efforts to move forward. With celiac disease, there was an unmet medical need with no treatment except a lifelong gluten free diet at the time he stepped in. He has showed a strong commitment to do something about this,” says Ludvig M. Sollid, director, Center for Immune Regulation, Research Council of Norway.
(Nilofer D’Souza)
2. Krishna Palem
He has deviced a new microchip that uses less energy; also, his solar-powered notepad, iSlate, is being tested in India
Profile: He is head of the Rice-NTU Institute for Sustainable and Applied Infodynamics (ISAI), Singapore.
His Main Area of Work: His research is focussed on embedded computing, including low-energy computing and nanoelectronics. He’s pioneered a “pruned” microchip technology. An “inexact hardware” that drastically reduces power demands of microprocessors by allowing them to make mistakes, it is the harbinger of the next-generation power-stingy processors. Called probabilistic pruning, this technology makes the integrated circuits perform twice as fast, use half as much energy, and occupy half the space of the traditional circuits. This, says Krishna, is done by cleverly managing the “probability of errors and limiting which calculations produce errors”.
While doing this Palem has showed that the energy consumed by a computation could be traded for its accuracy. For applications such as digital image and video processing or cryptography, such integrated circuits can be designed to produce results to only the required accuracy, and therefore, the power needed for the computation can be drastically reduced.
How His Research Can Benefit India: Along with his team, he is creating a complete prototype chip for a specific application, a hearing aid to begin with. He has developed a solar powered iSlate, an electronic notepad, which is currently being tested in schools in Mohd. Hussainpalli village in Andhra Pradesh. In its 125th anniversary, IEEE recognised his PCMOS technology and iSlate as one of the seven “world changing technologies”.
What They Say About Him: “An unwavering theme of his vision has been to address the principal challenges to sustaining the performance and economic benefits of Moore’s Law. With probabilistic CMOS technology, he has perhaps shown the most profoundly original approach to tackling the barriers of power consumption and noise immunity in the continuation of the decades-long exponential improvement in the area and speed of the integrated circuits, known as the Moore’s Law,” says Moshe Y. Vardi, director of the Ken Kennedy Institute for Information Technology at Rice University.
(Seema Singh)
FEATURES/INNOVATION SPECIAL | Mar 3, 2012 | 40011 views
18 Indian Minds Who Are Doing Cutting Edge Work
by Seema Singh
The wheels have been set in motion to win back some of the finest minds of Indian origin to align forces with their country of origin
1354 200
+ Comment now Email Print
1. Chaitan Khosla
He developed a treatment for celiac sprue, a disease that affects many in India. His work in biodiesel is globally significant too.
Profile: He is chair, chemical engineering; Wells H. Rauser and Harold M. Petiprin Professor in the School of Engineering; Professor of Chemical Engineering, Chemistry, and Biochemistry at Stanford University.
His Main Area of Work: His research lies at the intersection of chemistry and medicine. He has been working with genetically modified soil bacteria to develop new medicines (called polyketides) to treat cancer, infections, and other diseases.
In 1995, he co-founded biotechnology company Kosan Biosciences, which was acquired by drug maker Bristol Myers Squibb in 2008. Later, he founded Alvine Pharmaceuticals, which is developing an oral enzyme drug discovered in his laboratory for the treatment of celiac sprue—an autoimmune disorder, triggered by gluten in cereals, that affects the small intestines.
Yet another company he’s founded, Flamentera AG, is focussed on developing novel biomarkers for gastrointestinal diseases.
In September 2011, he and his research team found that high volumes of biodiesel can be produced from bacteria where E. coli can be used as a catalyst. Khosla and his team are currently trying to find ways to enhance its cellular controls to push this further.
How His Research Can Benefit India: A decade ago, one in 1,000 of the population were affected by celiac sprue but the occurrence has increased. Today, one in 310 people in India are affected by the disease and one in 120-300 of the population in Europe and North America.
His work in biodiesel is globally significant too. If successful, his work could help propel biodiesel to a commercial market from the niche space it occupies now.
What They Say About Him: “Khosla can tackle huge challenges and makes strong efforts to move forward. With celiac disease, there was an unmet medical need with no treatment except a lifelong gluten free diet at the time he stepped in. He has showed a strong commitment to do something about this,” says Ludvig M. Sollid, director, Center for Immune Regulation, Research Council of Norway.
(Nilofer D’Souza)
2. Krishna Palem
He has deviced a new microchip that uses less energy; also, his solar-powered notepad, iSlate, is being tested in India
Profile: He is head of the Rice-NTU Institute for Sustainable and Applied Infodynamics (ISAI), Singapore.
His Main Area of Work: His research is focussed on embedded computing, including low-energy computing and nanoelectronics. He’s pioneered a “pruned” microchip technology. An “inexact hardware” that drastically reduces power demands of microprocessors by allowing them to make mistakes, it is the harbinger of the next-generation power-stingy processors. Called probabilistic pruning, this technology makes the integrated circuits perform twice as fast, use half as much energy, and occupy half the space of the traditional circuits. This, says Krishna, is done by cleverly managing the “probability of errors and limiting which calculations produce errors”.
While doing this Palem has showed that the energy consumed by a computation could be traded for its accuracy. For applications such as digital image and video processing or cryptography, such integrated circuits can be designed to produce results to only the required accuracy, and therefore, the power needed for the computation can be drastically reduced.
How His Research Can Benefit India: Along with his team, he is creating a complete prototype chip for a specific application, a hearing aid to begin with. He has developed a solar powered iSlate, an electronic notepad, which is currently being tested in schools in Mohd. Hussainpalli village in Andhra Pradesh. In its 125th anniversary, IEEE recognised his PCMOS technology and iSlate as one of the seven “world changing technologies”.
What They Say About Him: “An unwavering theme of his vision has been to address the principal challenges to sustaining the performance and economic benefits of Moore’s Law. With probabilistic CMOS technology, he has perhaps shown the most profoundly original approach to tackling the barriers of power consumption and noise immunity in the continuation of the decades-long exponential improvement in the area and speed of the integrated circuits, known as the Moore’s Law,” says Moshe Y. Vardi, director of the Ken Kennedy Institute for Information Technology at Rice University.
(Seema Singh)
3. Rakesh Agrawal
He is working on efficient and cheap energy production from renewable sources such as solar and biomass.
Profile: He is Winthrop E. Stone Distinguished Professor of Chemical Engineering at Purdue University.
His Main Area of Work: Imagine being able to print out a solar panel on a flexible substrate; to be able to spray-on a low-cost nanocrystal coating and assemble a thin film solar plant wherever power is needed. If Agrawal has his way, this dream may well be reality one day. He is working on two types of nanocrystals: Copper indium gallium selenide (CIGS), and Copper zinc tin sulfide (CZTS). His team has managed to reach 12.5 percent efficiency with CIGS, which is pretty close to what you get with silicon solar cells. CZTS has only 8.4 percent efficiency, but utilises earth-abundant materials which will decrease the cost as efficiency increases.
He is also looking for an efficient way to convert biomass to liquid fuel (like diesel) that can be used in transportation (which uses up about half the fossil fuel produced worldwide).
His Approach: Thin-film technologies have made photovoltaic materials more competitive, but costs need to reduce further. Agrawal’s aims to bring it below 50 cents/peak watt. US solar panel maker First Solar is currently the lowest cost producer of thin films at 74 cents/peak watt. Agrawal’s approach is to utilise nanomaterials that can be suspended in appropriate solvents and then deposited utilising high throughput capabilities. He hopes to commercialise the systems when he achieves efficiencies of about 15 percent.
How His Research Can Benefit India: India is grappling with huge energy shortages. If solar cells become cheaper and more easily available, it can change the dynamics of power production and availability in the country.
What Others Say About Him: “Agrawal has been developing what are called ‘ink based’ precursors to make the thin film solar cells of either CIGS or CZTS. The highest efficiencies reported for CZTSSe (Copper Zinc Tin Sulfo-selenide) has been about 10 percent. There appears, at this point, no fundamental reason why it should not be possible to exceed 15 percent efficiencies,” says Supratik Guha, director, Physical Sciences Department, IBM Thomas J. Watson Research Center.
(Cuckoo Paul)
(contd ......)
http://forbesindia.com/article/inno...minds-who-are-doing-cutting-edge-work/32312/0