onebyone
SENIOR MEMBER
- Joined
- Jul 2, 2014
- Messages
- 7,550
- Reaction score
- -6
- Country
- Location
An Apollo astronaut argues that with its vast stores of nonpolluting nuclear fuel, our lunar neighbor holds the key to Earth's future. However, before we mine it, we'll need to determine who owns the moon?
A sample of soil from the rim of Camelot crater slid from my scoop into a Teflon bag to begin its trip to Earth with the crew of Apollo 17. Little did I know at the time, on Dec. 13, 1972, that sample 75501, along with samples from Apollo 11 and other missions, would provide the best reason to return to the moon in the 21st century. That realization would come 13 years later. In 1985, young engineers at the University of Wisconsin discovered that lunar soil contained significant quantities of a remarkable form of helium. Known as helium-3, it is a lightweight isotope of the familiar gas that fills birthday balloons.
Small quantities of helium-3 previously discovered on Earth intrigued the scientific community. The unique atomic structure of helium-3 promised to make it possible to use it as fuel for nuclear fusion, the process that powers the sun, to generate vast amounts of electrical power without creating the troublesome radioactive byproducts produced in conventional nuclear reactors. Extracting helium-3 from the moon and returning it to Earth would, of course, be difficult, but the potential rewards would be staggering for those who embarked upon this venture. Helium-3 could help free the United States--and the world--from dependence on fossil fuels.
That vision seemed impossibly distant during the decades in which manned space exploration languished. Yes, Americans and others made repeated trips into Earth orbit, but humanity seemed content to send only robots into the vastness beyond. That changed on Jan. 14, 2004, when President George W. Bush challenged NASA to "explore space and extend a human presence across our solar system."
It was an electrifying call to action for those of us who share the vision of Americans leading humankind into deep space, continuing the ultimate migration that began 42 years ago when President John F. Kennedy first challenged NASA to land on the moon. We can do so again. If Bush's initiative is sustained by Congress and future presidents, American leadership can take us back to the moon, then to Mars and, ultimately, beyond.
Although the president's announcement did not mention it explicitly, his message implied an important role for the private sector in leading human expansion into deep space. In the past, this type of public-private cooperation produced enormous dividends. Recognizing the distinctly American entrepreneurial spirit that drives pioneers, the President's Commission on Implementation of U.S. Space Exploration Policy subsequently recommended that NASA encourage private space-related initiatives. I believe in going a step further. I believe that if government efforts lag, private enterprise should take the lead in settling space. We need look only to our past to see how well this could work. In 1862, the federal government supported the building of the transcontinental railroad with land grants. By the end of the 19th century, the private sector came to dominate the infrastructure, introducing improvements in rail transport that laid the foundation for industrial development in the 20th century. In a similar fashion, a cooperative effort in learning how to mine the moon for helium-3 will create the technological infrastructure for our inevitable journeys to Mars and beyond.
The Basics of Limitless Power: Albert Einstein's famous E=MC2 equation reflects the enormous energy that can be released by fusing atoms. Hydrogen atoms fusing together to create helium powers the sun.
1. FIRST GENERATION: Scientists have duplicated solar fusion on Earth by using two "heavy" hydrogen atoms--deuterium and tritium--which fuse at lower temperatures than ordinary hydrogen. A first-generation deuterium-tritium fusion reactor operated experimentally for 15 years at the Princeton Plasma Physics Laboratory in New Jersey.
2. SECOND GENERATION: While useful for studying fusion, reactors operating with deuterium-tritium fuel are impractical for commercial use. Among other things, the reaction produces large amounts of radiation in the form of neutrons. Substituting helium-3 for tritium significantly reduces neutron production, making it safe to locate fusion plants nearer to where power is needed the most, large cities. This summer, researchers at the University of Wisconsin Fusion Technology Institute in Madison reported having successfully initiated and maintained a fusion reaction using deuterium and helium-3 fuel.
3. THIRD GENERATION: First-generation fusion reactors were never intended to produce power. And, even if they are perfected, they would still produce electricity in much the same way as it is created today. That is, the reactors would function as heat sources. Steam would then be used to spin a massive generator, just as in a coal- or oil-fired plant. Perhaps the most promising idea is to fuel a third-generation reactor solely with helium-3, which can directly yield an electric current--no generator required. As much as 70 percent of the energy in the fuels could be captured and put directly to work.--Stefano Coledan
A Reason To Return
Throughout history, the search for precious resources--from food to minerals to energy--inspired humanity to explore and settle ever-more-remote regions of our planet. I believe that helium-3 could be the resource that makes the settlement of our moon both feasible and desirable.
Although quantities sufficient for research exist, no commercial supplies of helium-3 are present on Earth. If they were, we probably would be using them to produce electricity today. The more we learn about building fusion reactors, the more desirable a helium-3-fueled reactor becomes.
Researchers have tried several approaches to harnessing the awesome power of hydrogen fusion to generate electricity. The stumbling block is finding a way to achieve the temperatures required to maintain a fusion reaction. All materials known to exist melt at these surface-of-the-sun temperatures. For this reason, the reaction can take place only within a magnetic containment field, a sort of electromagnetic Thermos bottle.
Initially, scientists believed they could achieve fusion using deuterium, an isotope of hydrogen found in seawater. They soon discovered that sustaining the temperatures and pressures needed to maintain the so-called deuterium-deuterium fusion reaction for days on end exceeded the limits of the magnetic containment technology. Substituting helium-3 for tritium allows the use of electrostatic confinement, rather than needing magnets, and greatly reduces the complexity of fusion reactors as well as eliminates the production of high-level radioactive waste. These differences will make fusion a practical energy option for the first time.
It is not a lack of engineering skill that prevents us from using helium-3 to meet our energy needs, but a lack of the isotope itself. Vast quantities of helium originate in the sun, a small part of which is helium-3, rather than the more common helium-4. Both types of helium are transformed as they travel toward Earth as part of the solar wind. The precious isotope never arrives because Earth's magnetic field pushes it away. Fortunately, the conditions that make helium-3 rare on Earth are absent on the moon, where it has accumulated on the surface and been mixed with the debris layer of dust and rock, or regolith, by constant meteor strikes. And there it waits for the taking.
An aggressive program to mine helium-3 from the surface of the moon would not only represent an economically practical justification for permanent human settlements; it could yield enormous benefits back on Earth.
http://www.popularmechanics.com/space/moon-mars/a235/1283056/
A sample of soil from the rim of Camelot crater slid from my scoop into a Teflon bag to begin its trip to Earth with the crew of Apollo 17. Little did I know at the time, on Dec. 13, 1972, that sample 75501, along with samples from Apollo 11 and other missions, would provide the best reason to return to the moon in the 21st century. That realization would come 13 years later. In 1985, young engineers at the University of Wisconsin discovered that lunar soil contained significant quantities of a remarkable form of helium. Known as helium-3, it is a lightweight isotope of the familiar gas that fills birthday balloons.
Small quantities of helium-3 previously discovered on Earth intrigued the scientific community. The unique atomic structure of helium-3 promised to make it possible to use it as fuel for nuclear fusion, the process that powers the sun, to generate vast amounts of electrical power without creating the troublesome radioactive byproducts produced in conventional nuclear reactors. Extracting helium-3 from the moon and returning it to Earth would, of course, be difficult, but the potential rewards would be staggering for those who embarked upon this venture. Helium-3 could help free the United States--and the world--from dependence on fossil fuels.
That vision seemed impossibly distant during the decades in which manned space exploration languished. Yes, Americans and others made repeated trips into Earth orbit, but humanity seemed content to send only robots into the vastness beyond. That changed on Jan. 14, 2004, when President George W. Bush challenged NASA to "explore space and extend a human presence across our solar system."
It was an electrifying call to action for those of us who share the vision of Americans leading humankind into deep space, continuing the ultimate migration that began 42 years ago when President John F. Kennedy first challenged NASA to land on the moon. We can do so again. If Bush's initiative is sustained by Congress and future presidents, American leadership can take us back to the moon, then to Mars and, ultimately, beyond.
Although the president's announcement did not mention it explicitly, his message implied an important role for the private sector in leading human expansion into deep space. In the past, this type of public-private cooperation produced enormous dividends. Recognizing the distinctly American entrepreneurial spirit that drives pioneers, the President's Commission on Implementation of U.S. Space Exploration Policy subsequently recommended that NASA encourage private space-related initiatives. I believe in going a step further. I believe that if government efforts lag, private enterprise should take the lead in settling space. We need look only to our past to see how well this could work. In 1862, the federal government supported the building of the transcontinental railroad with land grants. By the end of the 19th century, the private sector came to dominate the infrastructure, introducing improvements in rail transport that laid the foundation for industrial development in the 20th century. In a similar fashion, a cooperative effort in learning how to mine the moon for helium-3 will create the technological infrastructure for our inevitable journeys to Mars and beyond.
The Basics of Limitless Power: Albert Einstein's famous E=MC2 equation reflects the enormous energy that can be released by fusing atoms. Hydrogen atoms fusing together to create helium powers the sun.
1. FIRST GENERATION: Scientists have duplicated solar fusion on Earth by using two "heavy" hydrogen atoms--deuterium and tritium--which fuse at lower temperatures than ordinary hydrogen. A first-generation deuterium-tritium fusion reactor operated experimentally for 15 years at the Princeton Plasma Physics Laboratory in New Jersey.
2. SECOND GENERATION: While useful for studying fusion, reactors operating with deuterium-tritium fuel are impractical for commercial use. Among other things, the reaction produces large amounts of radiation in the form of neutrons. Substituting helium-3 for tritium significantly reduces neutron production, making it safe to locate fusion plants nearer to where power is needed the most, large cities. This summer, researchers at the University of Wisconsin Fusion Technology Institute in Madison reported having successfully initiated and maintained a fusion reaction using deuterium and helium-3 fuel.
3. THIRD GENERATION: First-generation fusion reactors were never intended to produce power. And, even if they are perfected, they would still produce electricity in much the same way as it is created today. That is, the reactors would function as heat sources. Steam would then be used to spin a massive generator, just as in a coal- or oil-fired plant. Perhaps the most promising idea is to fuel a third-generation reactor solely with helium-3, which can directly yield an electric current--no generator required. As much as 70 percent of the energy in the fuels could be captured and put directly to work.--Stefano Coledan
A Reason To Return
Throughout history, the search for precious resources--from food to minerals to energy--inspired humanity to explore and settle ever-more-remote regions of our planet. I believe that helium-3 could be the resource that makes the settlement of our moon both feasible and desirable.
Although quantities sufficient for research exist, no commercial supplies of helium-3 are present on Earth. If they were, we probably would be using them to produce electricity today. The more we learn about building fusion reactors, the more desirable a helium-3-fueled reactor becomes.
Researchers have tried several approaches to harnessing the awesome power of hydrogen fusion to generate electricity. The stumbling block is finding a way to achieve the temperatures required to maintain a fusion reaction. All materials known to exist melt at these surface-of-the-sun temperatures. For this reason, the reaction can take place only within a magnetic containment field, a sort of electromagnetic Thermos bottle.
Initially, scientists believed they could achieve fusion using deuterium, an isotope of hydrogen found in seawater. They soon discovered that sustaining the temperatures and pressures needed to maintain the so-called deuterium-deuterium fusion reaction for days on end exceeded the limits of the magnetic containment technology. Substituting helium-3 for tritium allows the use of electrostatic confinement, rather than needing magnets, and greatly reduces the complexity of fusion reactors as well as eliminates the production of high-level radioactive waste. These differences will make fusion a practical energy option for the first time.
It is not a lack of engineering skill that prevents us from using helium-3 to meet our energy needs, but a lack of the isotope itself. Vast quantities of helium originate in the sun, a small part of which is helium-3, rather than the more common helium-4. Both types of helium are transformed as they travel toward Earth as part of the solar wind. The precious isotope never arrives because Earth's magnetic field pushes it away. Fortunately, the conditions that make helium-3 rare on Earth are absent on the moon, where it has accumulated on the surface and been mixed with the debris layer of dust and rock, or regolith, by constant meteor strikes. And there it waits for the taking.
An aggressive program to mine helium-3 from the surface of the moon would not only represent an economically practical justification for permanent human settlements; it could yield enormous benefits back on Earth.
http://www.popularmechanics.com/space/moon-mars/a235/1283056/