U also posted a wrong data on r-77 50 km.Its head on engagement range is 80 km rather.
As for smerch at least there was something,i still didn't figure out why the whole article would be telling the truth and then lie about this small bit?
As for radars he could be talking about the modified green pine radars or the elta aerostats.As for india's basic ground based radar system.
1]''The forward radar picket lines at the border usually 150 km back comprise one ST-68/U and two P-18/-19 radars.Both are russian origin.And supported by 2 P-12/-15 radars.
The ST-68/U is known by NATO as the Tin Shield radar and has a maximum range of some 217 miles (350km). It is optimised for the detection of low-flying aircraft and cruise missiles employing electronic countermeasures (ECM).This acts as command and reporting centre''.
However old p-18/p-19/p-12 are soviet era and despite respectable detection range dated.
2]India has been producing the French-designed TRS-2215D 3-D surveillance radar under licence for a number of years and has derived from that an indigenously built radar - PSM-33 Mk 2. This has supplanted most of the older Soviet-bloc equipment. The TRS-2215D and PSM-33 Mk.2 have surveillance ranges of up to 317 (510km) with a peak power output of 660-700kW operating in the E/F bands and possess a very significant ECCM capability.
3]A number of Air Defence Control Centres (ADCCs) are located behind the radar picket line. The radar picket line and the ADCC are separated by a layer of air defence weapons which are the first to engage the intruders. The backbone of the Indian Air Defence Ground Environment system is the huge THD-1955 3-D long-range surveillance radar that was once in widespread use throughout NATO. This radar, originally of French design, has been licence-built in India for a number of years. This E/F-band radar, though somewhat elderly, still offers sterling performance characteristics and is capable of maximum detection ranges of up to 620 miles (1,000km), though the Indian Air Force usually limits its power to a 250 miles (400km) detection range. These form the core of the ADCCs. The THD-1955 has a peak operating power of up to 20MW, though its normal operating power is usually 2MW. The radar has comprehensive ECM/ECCM capabilities and has no real detection altitude limitation.
The IAF uses extensive microwave communications systems and mobile digital troposcatter terminals. Like the ADGES, the BADZ consists of three layers. The first of these are the mobile observation posts, followed by a mixed layer of weapons and their associated radars, along with a picket line of low-level radars. These are, in turn, supported by anti-aircraft artillery batteries. This network is controlled by a ST68U radar, supported by other radars such as the TRS-2215D and the PSM-33. Low-level detection gaps are filled by the Indian-made Indra-1 radar which has a range of 30 miles (50km). The BADZ provides comprehensive and gapfree coverage over its assigned area of responsibility. Some observers have likened the BADZ set-up to the defence pattern of a carrier battle group. Any aircraft attacking a vital military target, therefore, not only has to get past the ADGES, but also the far more formidable BADZ.
The AA guns are radar directed by a mix of licence-made 'Flycatcher' and 'Super Fledermaus' and the indigenous 'PIW-519' radars. The 'Super Fledermaus', though ageing, has been extensively upgraded and now represents a very capable tracking radar with significant capability against difficult, low-flying targets such as cruise missiles. The upgraded radar has a range of 56 miles (90km) and is fitted with a new digital fire control computer. In addition, licence-built Dutch 'Reporter' radars are used for low-level target detection. This system has a range of 25 miles (40km) and can track up to 20 targets simultaneously.
The phalcon AWACS system has a detection range of roughly 217-248 miles (350-400km) and can handle at least 200 targets simultaneously.
Newly introduced are Central Acquisition Radar/ROHINI, a state of the art planar array S-Band radar operating on the stacked beam principle. With a range of 180 km, it can track while scan 200 fighter sized targets. Its systems are integrated on high mobility, locally built TATRA trucks for the Army and Air Force; however it is meant to be used by all three services. Initially developed for the long-running Akash SAM system, seven were ordered by the Indian Air Force for their radar modernization program and two of another variant were ordered by the Indian Navy for their P-28 Corvettes.
2D Low Level Lightweight Radar (LLLR) for the Indian Army, which requires many of these units for gapfilling in mountainous terrain. The Indian Air Force will also acquire then for key airbases. The LLLR is a 2D radar with a range of 40 km against a 2 square meter target, intended as a gapfiller to plug detection gaps versus low level aircraft in an integrated Air Defence Ground network. The LLLR makes use of Indra-2 technology, namely a similar antenna array, but has roughly half the range and is much smaller and a far more portable unit. The LLLR can track while scan 100 targets and provide details about their speed, azimuth and range to the operator. The LLLR makes use of the BFSR-SR experience and many of the subsystem providers are the same. Multiple LLLRs can be networked together. The LLLR is meant to detect low level intruders, and will alert Army Air Defence fire control units to cue their weapon systems