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Abstract— Landing is the most difficult phase of the flight 
for any airborne platform. Due to lack of efficient systems, there 
have been numerous landing accidents resulting in the damage 
of onboard hardware. Vision based systems provides low cost 
solution to detect landing sites by providing rich textual 
information. To this end, this research focuses on accurate 
detection and localization of runways in aerial images with 
untidy terrains which would consequently help aerial platforms 
especially Unmanned Aerial Vehicles (commonly referred to as 
Drones) to detect landing targets (i.e., runways) to aid automatic 
landing. Most of the prior work regarding runway detection is 
based on simple image processing algorithms with lot of 
assumptions and constraints about precise position of runway in 
a particular image. First part of this research is to develop 
runway detection algorithm based on state-of-the-art deep 
learning architectures while the second part is runway 
localization using both deep learning and non-deep learning 
based methods. The proposed runway detection approach is 
two-stage modular where in the first stage the aerial image 
classification is achieved to find the existence of runway in that 
particular image. Later, in the second stage, the identified 
runways are localized using both conventional line detection 
algorithms and more recent deep learning models. The runway 
classification has been achieved with an accuracy of around 
97% whereas the runways have been localized with mean 
Intersection-over-Union (IoU) score of 0.8. 
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I. INTRODUCTION 
Unmanned Aerial Vehicles (UAVs) have become very 

popular during the last few years due to their use in tasks that 
are too dangerous to be performed by manned aerial vehicles. 
They have been used for various purposes other than military 
such as urban planning, inspection, monitoring, surveying, 
search and rescue, precision agriculture and many more using 
a variety of onboard sensors including optical images, laser 
scanners or even synthetic aperture radars [1][2].  

For successful operation of UAVs without hardware 
damages, a safe landing operation is essential. To achieve 
this, vision based approaches for UAV landing have been an 
active topic in research particularly owing to their ability to 
provide rich textual information at relatively much less 
relative cost making them much more suitable for automatic 
landing problem compared to other sensors. These vision-
based approaches can be integrated with traditional control 
techniques for a robust landing approach. 

Runway detection can be defined as a method of 
identifying runway in an image. Localization means to find 
the exact location of runway in the image. Runway detection 
and localization is an important task for UAVs as they can 
use it for landing as well as self-localizing and navigation. 

Rotary wing UAVs are simple to land as they can hover and 
land vertically. But fixed wing UAVs require runway to land. 
Vision based UAV navigation is typically controlled by 
processing images taken from onboard cameras. The 
classified and detected runways in those images allow to 
extract additional information from them such as relative 
position and orientation, which in turn can be used to align 
fixed-wing UAVs to runway and hence guiding it in landing.  

Vision based approach for fixed-wing UAV landing 
includes vision-based step for runway detection, alignment of 
UAV to runway and a controller to guide UAV accordingly. 
This research only focuses on the first step that is the runway 
detection using single onboard camera while preparing for 
landing. 

II. LITERATURE REVIEW 
This section presents different approaches previously 

being used for runway detection for UAV landing and for 
other purposes such as urban planning etc. Majority of these 
approaches are based on template matching, Hough 
transform, Active Contours and Machine Learning 
algorithms. Broadly, these approaches can be categorized 
into following two main categories: template based and 
feature based. 

A. Template Based Approaches 
Template based approaches use a model of the object to 

be detected in the query image. This model is stored in an 
image called a template. This template is compared with the 
query image on pixel by pixel basis to find matches. Template 
based methods are not too common and mostly they are used 
alongside other feature based techniques. In [3], delta 
correlation has been used for matching process in proposed 
template based runway recognition method. In [4], EVS and 
SVS have been used to generate templates and chamfer 
matching has been used for matching process.  

B. Feature Based Approaches 
These approaches use features of runway like intensity 

edges, high contrast corners, texture primitives and other 
similar image components. Feature based approaches can be 
further divided into two more categories; one that uses 
geometric shape of the runway for detection, and the other 
that uses machine learning based approaches. 

1) Geometric Shape Based Approaches: In [5], they have 
proposed a method which combines segmentation and 
minimization of an energy function. In [6], they have 
employed sobel operators to get edges and used heuristic 
search to extract lines. Runways edges have been determined 
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based on parallel constraint. In [7], the authors used canny 
edge detection with morphology opening to detect runway in 
Aviation Reconnaissance Images.  In [7], the runways using 
primitive sobel and robert edge detectors have been used for 
detection. In [8], they have used hough transform after 
broadening runway axis based on certain criteria to extract 
runway edges in remote sensing images. In Error! 
Reference source not found., they have proposed a sensor 
fusion algorithm based on hough transform and discrete 
wavelet transform to detect runways. In [9], they have 
proposed a combination of ICCBET and hough transform to 
localize two parallel lines of runway. 

2) Machine Learning Based Aproaches: In [12], they 
have used a SVM based classifier to detect runway in ROCs 
formed by grouping of SIFT key points in IKONOS images. 
In [13], they have proposed a texture based method which 
uses adaboost algorithm with features such as Fourier power 
spectrum, Gabor filters etc. to detect runway. In [14], they 
have used hough transform and graph based saliency model 
to find ROIs based on runway existence and then have used 
HDR to classify extracted SIFT features to detect airport 
region. In [15], they have used an improved K-means 
clustering algorithm to classify potential straights found by 
rotating projection algorithm to extract runway edges. In [16], 
they have proposed a combination of SVM classifier and 
parallel line constraint to discriminate runways. In [17], they 
have used Bayesian classifier to classify runway pixels in 
POLSAR image. Real runway has been found by using 
morphology filtering and topological properties. In [18], the 
authors proposed airport detection method using deep end-to-
end CNN architecture with hard example mining. In [19], 
they have proposed a runway detection method based on LBP 
(Local Binary Pattern) Cascade Classifier. In [20], they have 
proposed a runway detection method based on a multi-
channel pulse coupled neural network (MPCNN).  

Some research has been based on deep learning. Here we 
mention two such papers. In [21], they proposed an airport 
detection based on Faster R-CNN. First, a CNN has been used 
to identify potential airport regions. Then another CNN has 
been used to detect airport by using some improvements 
based on runway features. In [22], they have used LSD to find 
potential airport regions based on runways. Then they have 
used AlexNet to classify these regions as airport. 

It can be inferred from above discussion that majority of 
the runway detection methods are not based on machine 
learning. And those that are based on machine learning are 
mostly airport detection methods. This calls for more 
research on machine learning based techniques for runway 
detection. It has been known that machine learning based 
methods can give more accurate results. Usually, they are 
avoided in real time object detection methods, but with the 
recent advancement in hardware, now it is possible to even 
use deep learning for real time object detection. 

III. METHODOLOGY 
In machine learning domain, it has been established that 

CNNs give us more accurate feature representation as 
compared to other methods. For runway detection, first land 
has been classified to know whether there is runway in the 
image or not using CNNs. After confirming that runway is 

present in the image, it has been localized using both CNN 
based methods and non-CNN based methods. This research 
can be divided into two modules; runway detection and 
runway localization. 

A. Runway Detection (Land Classification) 
Image classification is the most common task in computer 

vision. In image classification, algorithm processes image and 
classifies the object present in the image. For land 
classification, an image is processed to identify the area 
represented by that image. Land consists of multiple areas like 
runways, roads, forests, buildings, seas, mountains, deserts 
and many more. This classification is performed to find 
whether a runway exists in the image or not. In this module, 
CNN models have been used for classification purpose. 

1) Dataset: For binary classification, land areas other 
than runway like roads, forests, mountains, deserts etc. would 
have been treated as one class which would have been a less 
suitable approach. So, a remote sensing dataset [23] with 
multiple classes has been used for this purpose. This dataset 
is the largest available dataset, which is variant enough to 
apply CNN models and consists of satellite images 
downloaded from google earth, collected by experts. There 
are 45 classes with each class containing 700 images. 

2) Feature Extraction: CNN classification models 
VGG16 [25], Resnet50, Resnet152 [26] and Densenet161 
[27] trained on ImageNet dataset [24] have been used to 
extract features from images. For each classification model, 
input images have been resized to 224x224 and the only 
preprocessing performed is mean normalization. Keras 
models with backend as TensorFlow have been used for 
feature extraction.  

a) VGGNet: For VGGNet, pre-trained VGG-16 model 
has been taken and last FC layer has been removed to extract 
4096- dimensional feature set from images. 

b) ResNet: Two models of Resnet have been used; 
Resnet50 and Resnet152. For both models, classification 
layer has been removed to extract 2048-dimensional feature 
set from images. 

c) DenseNet: For densenet,  Densenet-161 model has 
been taken and classification layer has been removed to 
extract 2208-dimensional feature set from images. 

3) Classifier & Training: After extracting features, a 
softmax classifier has been trained on these features. This 
classifier has been implemented using TensorFlow. It works 
as follows: Weight matrix is initialized using random values 
based on normal distribution and biases are initialized to zero. 
Inputs (extracted features) are multiplied with weight 
matrices and biases are added. Training labels are first 
converted into one hot encoding sequence (representation of 
labels as binary vectors). Then loss is calculated by 
computing cross-entropy and taking average of it across all 
training examples. The minimum loss is found using gradient 
descent optimizer. Three classifiers for each model have been 
trained with different training and testing data and their mean 
accuracy has been reported in results section for different 
training ratios. Cross entropy has the form: 
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Where fj is the jth element of the class scores vector f. The full 
loss of dataset is average of Li across all training examples. 
Table I shows parameters used for training. 

TABLE I.  PARAMETERS USER FOR TRAINING  

Parameters Values 
Learning Rate 0.05 
Regularization Parameter 0.01 
Batch Size 128 
Number of Steps 10000 

 
4) Fine-tuning: As the selected dataset is like ImageNet 

dataset so finetuning the classification model could improve 
results. Only the Model with the best performance from the 
above-mentioned models has been finetuned. ResNet50 has 
been selected as the best model based on results presented in 
Results section. Keras based implementation of Resnet50 
trained on ImageNet has been used for finetuning. Softmax 
classifier of Resnet model has been replaced with a 
customized softmax classifier. For finetuning, input images 
have been resized into 224x224 and have been randomly 
divided into 80% training data, 10% validation and 10% test 
data. Parameters have been finetuned manually based on 
validation accuracy. Table II shows parameters used for 
finetuning. 

TABLE II.  PARAMETERS USED FOR FINETUNING RESNET50 

Parameters Values 
Learning Rate 0.001 
Momentum  0.9 
Batch Size 16 
Number of Epochs 50 

 

B. Runway Localization 
Runway detection is used for only finding out that 

whether runway exists in the image or not. To find the exact 
location of the runway in the image, the runway has been 
localized using both line detection algorithms and deep 
learning CNN models. Same dataset which has been used for 
classification purpose has been used here for localization 
purpose. But here only one class of that dataset that is runway 
is used. The purpose is to localize only runway in the image. 

1) Line Detection Techniques: As the runway structure is 
composed of straight lines, line detection algorithms can be 
employed to localize the runway in the image. Simple Hough 
transform, probabilistic hough transform and LSD [28] based 
approaches have been used for localizing runway in this 
section. 

a) Hough Transform (HT): In this approach, firstly 
runway images from the selected dataset have been converted 
into grayscale images. It can be clearly seen from Figure 1 
that gray values of runway area are much different than those 
of background. Then Canny edge detection has been applied 
to extract edges. Canny algorithm with hysteresis threshold 
ratio of 1:3 has been used for detecting edges in the image. 
Then hough transform has been applied on edge image with 
� accuracy of 1 and different � accuracy and threshold 
parameters. It returns lines in parametric form (�, �). This 
parametric form has been used to get endpoints of returned 
lines as follows: 

• �� � ��� � � � 
��� 

• �� � ��� � � � 
�� 
• �� � ��� � � � 
��� 
• �� � ��� � � � 
�� 

where � � �� � , � �  !��  and �� � � � "#�, �� � � � "#� 
and n is the number of rows in the image. For each line 
detected in the image, its distance and angle is compared to 
every other line detected in the image. The distance 
$! %���&
�'(� between two lines is calculated as follows: 

 
)*+,-.�/0�.�12�3�10�-3�/0�3�12�.�14�3�/�.�10�.�/�3�15

6-.�/0�.�12/4�-3�/0�3�12/
� (2) 

The angle of a line i to horizontal axis is calculated as follows: 

 ��78&� � � 9:;0� .�/�<�.�1
3�/�<�3�1� (3) 

To find the correct values for angles, their sign is checked. If 
there is a minus sign, the value of angle is added to 180 
degrees so that angles of two lines can be correctly compared. 
Now, the final two lines to identify runway are chosen based 
on two conditions: 

I. $! %���&
�'(� = >:?$! %���&   
II. �� 
��78&
�� �� ��78&
(�� @ %#"& #�8$ 

Secondly, probabilistic Hough transform has been 
applied to see that if there is any improvement in results. It 
takes two extra parameters alongside with image, � accuracy, 
� accuracy and threshold. First is the minimum length of a 
line, lines shorter than this length are rejected and the second 
one is the maximum gap allowed between two lines to 
consider them as one. After detecting the lines, same above 
mentioned procedure has been used to identify two 
boundaries of runway. 

b) Line Segment Detector (LSD): In this approach, 
firstly runway images from the selected dataset have been 
converted into grayscale images. After detecting all line 
segments in the image, their lengths have been calculated. It 
is known that runways are elongated structures and they have 
long boundaries, so some threshold has been set and lines are 
filtered based on their length. That is, those lines are selected 
which have length greater than some threshold. LSD 
algorithm returns the two endpoints (x1, y1), (x2, y2) of a line 
segment so the length of a line segment cab be calculated as 
follows: 

 8&�7%# � �A
�B � �C�� ��
�B � �C��� (4) 

Finally, the constraints (I, II) have been used to find the final 
two lines representing runway boundaries. 

2) CNN: The  objective is to localize the runway such that 
the runway can be extracted with its boundaries. Bounding 
boxes give us subset of the image which includes the required 
object. We still cannot extract the exact the object as it is. To 
extract the object with its boundaries, a segmentation 
algorithm is needed. In segmentation, each pixel is assigned 
to a class. For each pixel, it is decided that whether it belongs 
to a particular class or not, so it can also be called as pixel 
level classification. A pixel wise mask for the required object 
is generated and the model learns by finding the difference 
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between the predicted and the ground truth mask. First 
bounding boxes can be found to reduce the image area on 
which pixel wise classification is to be applied. The model 
used for this purpose is Mask R-CNN [29]. Keras based 
implementation of Mask R-CNN pre-trained on COCO 
dataset [30] has been used as a segemntation algorithm. Its 
backbone architecture is Resnet50. As it has been seen in land 
classification that Resnet50 learned runway features very 
well compared to other models so it is a suitable choice for 
this purpose. This pre-trained model has been finetuned on 
selected dataset and custom-made dataset. 

a) Dataset: 700 images of class runway from the 
selected dataset have been labeled using LabelMe1. Figure 1 
shows some samples of runway masks. Runways have been 
labeled by drawing closed polygons around the runway. 
Instead of labeling the whole runway including curved areas, 
only that part of the runway has been labeled which is used 
for landing. This part of runway is covered with white lanes. 
Along with other runway features, these white lanes are the 
major features which model learns.  

 
b) Experiments: Experiments have been conducted 

using train, validation and test sets. Following ratio have been 
observed between these sets. Train: Validation: Test = 70: 10: 
20. Table III shows parameters used for finetuning mask 
segmentation model. Experiments have also been conducted 
on self-made customized dataset using train and validation 
sets. This has been done to indentify that how model behaves 
on runway images which have been taken from more height 
as compared to selected dataset. Some 100 images 
downloaded from google earth have been taken and have 
been split into 16 images each to form a dataset similar to the 
selected dataset. The customized dataset has been divided 
into train and validation sets. Out of 457 images, 381 have 
been used for training and 76 have been used for validation 
purposes. 

 
Fig. 1. Some samples of runway masks 

                                                           
1 LabelMe, http://labelme2.csail.mit.edu/Release3.0/index.php 

TABLE III.  PARAMETERS USED FOR TRAINING 

Parameters Values 
Learning Rate 0.0001 
Momentum  0.9 
Decay 0.0001 
Batch Size 1 
Number of Epochs 10 

IV. RESULTS AND DISCUSSION 

A. Land Classification 
As each class in the dataset has equal number of images 

so accuracy can be used to measure the correctness of the 
model. With unequal images in each class, accuracy is biased 
but in this case, when there are equal number of images in 
each class, accuracy will not be biased. Accuracy is 
calculated simply by counting the number of instances where 
predicted class is same as true class and dividing it by the 
total number of samples in the dataset. Accuracy is calculated 
as follows: 

 +DE
FG�H�IJ�H�K)*�KLLJGD��K)*�K�
JMJ)K�NDE*�G�MO�+)EFK�+ �P BQQ� (5) 

1) Feature Extraction: Graph in Figure 2 shows 
comparison of four CNN models used for extracting features 
from images. It can be seen that increasing training ratio has 
resulted in increased accuracy. According to graph, Resnet50 
and Resnet152 have almost same performance based on their 
accuracies. But as shown in Table IV Resnet50 is faster so it 
has been chosen for finetuning. Table V shows average time 
of image read operation and average time of classifying 
extracted features for resnet architectures.  

 
Fig. 2. Comparison of CNN models used for feature extractionmparison of 
processing time 

 Feature Extraction 
cpu (sec/image) gpu(sec/image) 

VGG16 0.56 0.024 
Resnet50 0.27 0.028 

Resnet152 0.76 0.056 
Densenet161 0.75 0.078 

 
TABLE IV.  PROCESSING TIME OF IMAGE READ AND RESNET 

Average time of image read 
operation 

gpu (sec/image) cpu (sec/image) 
0.75  0.52  

Average time of classifying 
extracted deep features 

Resnet50 Resnet152 
0.038  0.038  

 
2) Finetuning: CNN model Resnet50 has been finetuned 

on selected dataset. Model has been initialized with 
pretrained weights of ImageNet dataset. Validation accuracy 
on training ratio of 80% has been reported to be 97.33% and 
test accuracy on training ratio of 80% has been reported to be 

Authorized licensed use limited to: Michigan State University. Downloaded on October 20,2021 at 20:37:15 UTC from IEEE Xplore.  Restrictions apply. 



96.63%. To evaluate the model on target class runway, 
precision and recall has been calculated for class runway. For 
training ratio of 80%, precision and recall has been calculated 
as 94.44 % and 97.14% respectively. This means that 
capability of model to correctly classify a runway image as 
runway is a little more as compared to capability of a model 
to not classify a non-runway image as runway. For 
comparison with previous research, model has been finetuned 
with 10% and 20% training ratio too. Table VI compares 
these results.  

TABLE V.  COMPARISON WITH PREVIOUS RESULTS 

 Model 
used 

Without fine-tuning With fine-tuning  
10% 20% 10% 20% 

Existing 
results 

VGG16 76.47± 
0.18 

79.79± 
0.15 

87.15± 
0.45 

90.36± 
0.18 

Proposed 
Approach 

Resnet50 82.80± 
0.20 

85.33± 
0.06 

88.47 90.6 

 
3) Customized Dataset Results: Here, only one class 

runway has been considered. Every other class is treated as a 
negative sample for runway. Evaluation metrics accuracy, 
precision and recall has been used for evaluating resnet50 on 
customized dataset. As there are equal number of positive and 
negative samples, so accuracy will be unbiased. Accuracy of 
resnet50 without finetuning on customized dataset for class 
runway has been found to be 88.88%. The model correctly 
predicted the runway class with a precision of 86.36% and 
recall of 92.34%. Difference between the recall and precision 
tells us that the model has a better true positive rate for class 
runway. Accuracy of finetuned resnet50 on customized 
dataset for class runway has been found to be 90.73%. The 
finetuned model correctly predicted the runway class with a 
precision of 89.03% and recall of 92.89%. With finetuning, 
accuracy of runway class has increased by almost 2%. 

B. Runway Localization 
1) Hough Transform: For evaluation purpose, 460 

images with different properties have been selected from 700 
runway images of selected dataset. Whether runway has been 
successfully localized or not, it has been evaluated by 
inspection. Runway is considered successfully localized if 
two detected lines are almost same as the real two boundaries 
of the runway. All such images have been manually counted, 
and accuracy has been reported. Table VII shows accuracy 
results for simple hough transform based approach and Table 
VIII shows accuracy results for probablistic hough transform 
based approach. Figures 3 and 4 shows stepwise results of HT 
based approach and PHT based approach respectively.  

TABLE VI.  ACCURACY OF HT BASED APPROACH 

R S vote threshold Accuracy 
1 T BUQV  100 74.13% 
1 T BWQV  100 70% 

TABLE VII.  ACCURACY OF PHT BASED APPROACH 

R S vote 
threshold 

min 
length 

max 
gap Accuracy 

1 T BUQV  100 100 10 70.65% 
1 T BWQV  100 100 90 74.50% 

 

 
Fig. 3. Stepwise results of HT based approach (a) Original image (b) 

Grayscale image (c) Result of canny edge detection (d) Result of applying 
HT (e) Result of applying constraints I, II 

 

Fig. 4. Stepwise results of PHT based approach (a) Original image (b) 
Grayscale image (c) Result of canny edge detection (d) Result of applying 

PHT (e) Result of applying constraints I, II 

2)  Line Segment Detector: OpenCV based 
implementation of LSD has been used with default 
parameterization as it showed satisfying results except for 
number of bins. Number of bins have been selected based on 
the dataset used. Same set of images have been used as in 
above method and runway has been correctly localized in 
almost 76.5% of the total images. Figure 5 shows stepwsie 
results of LSD based approach.  

 
Fig. 5. Stepwise results of LSD based approach (a) Original image (b) 

Grayscale image (c) Result of applying LSD (d) Result of applying length 
constraint (e) Result of applying constraints I, II 

3) CNN: Both selected dataset and novel customized 
dataset has been used for experiments. In both cases, weights 
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have been  initialized with pre-trained weights of COCO 
dataset for finetuning. Parameters used have been finetuned 
manually based on evaluation metrics. Evaluation metrics 
used for evaluating the model are; IOU, Pixel wise evaluation 
and average precision. 

a) Intersection over union (IOU): As the name implies, 
IOU is a fraction with a numerator which gets the area of 
overlap between the predicted and ground truth mask and 
denominator gets the area of union of both predicted and 
ground truth masks. In mathematical form, IOU can be 
depicted as: 

 XYZ � �E�
[�\E�

]��
�E�

[4�E�
]� (6) 

b) Pixel wise evaluation: For each image, pixelwise 
accuracy, precision and recall calculated. For these metrics, 
binary classification is considered that is whether a pixel 
belongs to runway (class 1) or background (class 0).  

c) Average Precision: IOU is compared with 
thresholds in range of 0.5 to 1.0 with standard deviation of 
0.05. Based on this comparison, for each threshold, precision 
is calculated. Then average precision is calculated over all 
thresholds for a single image. 

d) Selected Dataset Results: As seen from Figure 6, 
model has been successful in its ability to accurately detect 
runways masks for test dataset. For training purpose, masks 
generated for runways mostly included straight parts of 
runway. This property is depicted in the last image of above 
figure where only that part of the runway is detected which 
has been marked as runway in the ground truth image. To 
evaluate these experiments, all three evaluation metrics 
discussed above have been used. Intersection over union has 
been calculated using OR and AND operations on images. 
Mean IOU (masks) for validation set is found to be 0.80 and 
Average IOU (masks) for test set is found to be 0.76.  For 
each image in val/test dataset, pixelwise accuracy, precision 
and recall has been calculated. For these metrics, binary 
classification is considered that is whether a pixel belongs to 
runway (class 1) or background (class 0). Mean pixelwise 
accuracy, precision and recall over whole val/test dataset is 
reported in Table IX. There are two classes runway and 
background. For each image, IOU has been calculated. Then 
iou is compared with thresholds in range of 0.5 to 1.0 with 
standard deviation of 0.05. Based on this comparison, for 
each threshold, precision is calculated. Then average 
precision is calculated over all thresholds for a single image. 
Finally mean average precision is calculated over all images. 
Table X shows mean average precision for different 
thresholds.  

TABLE VIII.  PIXEL WISE EVALUATION 

 Validation  Test 
Mean pixelwise accuracy 0.93 0.88 
Mean pixelwise precision 0.90 0.82 
Mean pixelwise recall 0.84 0.79 

 

 
Fig. 6. Mask R-CNN results on selected dataset. Above row shows true 

masks and lower row shows predicted masks. 

TABLE IX.  MEAN AVERAGE PRECISION 

Threshold  mAP 
0.5 – 0.6  0.94  
0.6 – 0.7  0.90  
0.7 – 0.8  0.85  
0.8 – 0.9  0.75  
0.9 – 1.0  0.37  

 
e) Customized Dataset Results: The customized 

dataset is different from the selected dataset in the sense that 
it has narrower runways. Runway images of selected dataset 
have mostly broader runways. This dataset has been used to 
test that how model behaves when there are narrow runways 
in images. As seen from Figure 7, model is able to correctly 
detect these narrow runways. Intersection over union for 
validation set is found to be 0.73. Below tables shows the 
pixel wise accuracy, precision and recall for validation set. 
Mean average precision for threshold of range (0.5 to 1.0) is 
found to be 0.75. Mean test execution time for predicting 
masks is found to be 0.26 s per image. 

 
Fig. 7. Mask R-CNN results on customized dataset.. Above row shows 

true masks and lower row shows predicted masks. 

V. CONCLUSION 
This paper presents a method to perform the runway 

detection using aerial images acquired from onboard vision 
sensor. The work presented in this paper is the initial step in 
UAV landing that includes the detection and localization of 
runways.  

This research has been conducted to find an accurate 
runway detection model. Previous research has been mostly 
based on non-machine learning based methods with lot of 
assumptions about position of runway in the image. Use of 
deep learning in runway detection allows to detect runways 
without explicitly extract hand crafted features. The proposed 
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runway detection model has been validated on two datasets 
including a custom-made runway detection dataset and a 
public remote sensing dataset for aerial image classification 
which shows that this model can detect any shape of runway 
with the appropriate training data.  

This research includes two modules, first land has been 
classified to find out if there exists a runway or not, then 
runway detection model has been applied to extract runway 
from image. Combination of these two approaches increase 
accuracy. With right hardware, this can be implemented in 
landing of UAVs. After successful extraction of runway, this 
extracted runway can be used to align UAV with the runway. 
The proposed runway detection model achieved reasonable 
IOU of 0.8 which validates its efficacy. 
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