
Mechatronics 21 (2011) 844–860
Contents lists available at ScienceDirect

Mechatronics

journal homepage: www.elsevier .com/ locate /mechatronics
Autonomous terrain-following for unmanned air vehicles

Raza Samar ⇑, Abdur Rehman
Centre for Control & Instrumentation, Engineering & Scientific Commission, Islamabad, Pakistan

a r t i c l e i n f o
Article history:
Available online 25 October 2010

Keywords:
Terrain-following
Decision making and autonomy
Altitude control
Mission planning
Guidance and control of UAVs
Trajectory tracking and path following
robust control applications
Eectromechanical actuators
0957-4158/$ - see front matter � 2010 Elsevier Ltd. A
doi:10.1016/j.mechatronics.2010.09.010

⇑ Corresponding author.
E-mail addresses: raza.samar@gmail.com, raza@m
a b s t r a c t

This paper presents an integrated guidance and control design scheme for an unmanned air vehicle
(UAV), and its flight test results. The paper focuses on the longitudinal control and guidance aspects, with
particular emphasis on the terrain-following problem. An introduction to the mission, and the terrain-fol-
lowing problem is given first. Waypoints for climb and descent are defined. Computation of the reference
trajectory in the vertical plane is discussed, including a terrain-following (TF) algorithm for real-time cal-
culation of climb/descent points and altitudes. The algorithm is particularly suited for online computa-
tion and is therefore useful for autonomous flight. The algorithm computes the height at which the
vehicle should fly so that a specified clearance from the underlying terrain is always maintained, while
ensuring that the vehicle’s rate of climb and rate of descent constraints are not violated. The output of
the terrain-following algorithm is used to construct a smooth reference trajectory for the vehicle to track.
The design of a robust controller for altitude tracking and stability augmentation of the vehicle is then
presented. The controller uses elevators for pitch control in the inner loop, while the reference pitch com-
mands are generated by the outer altitude control loop. The controller tracks the reference trajectory
computed by the terrain-following algorithm. The design of an electromechanical actuator for actuating
the control surfaces of the vehicle during flight is also discussed. The entire guidance and control scheme
is implemented on an actual experimental vehicle and flight test results are presented and discussed.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

The notion of unmanned vehicles capable of autonomous flight
is fast becoming a reality, with the level of autonomy continuously
on the increase. The availability of high performance embedded
computing platforms combined with the development of sophisti-
cated algorithms has transformed the realm of unmanned vehicles
within a span of a few years. In this paper we present an integrated
approach to the design of a practical and autonomous terrain-fol-
lowing guidance and control system for an experimental aircraft,
and discuss its in-flight performance.

The UAV under consideration is a high performance vehicle,
shown in Fig. 1. It is propeller driven in a push-configuration. Pitch
control is provided by a set of canards located forward of the main
wing, roll control is provided by ailerons on the main wing, and the
two vertical tails have rudders. The cruising speed is about 50 m/s.
The main tasks of the planning, guidance and control system are to:

� given a mission in terms of geographical waypoints (latitude
and longitude information), generate a series of altitude change
(or climb/descent) points while satisfying vehicle constraints
and providing a minimum clearance above the terrain,
ll rights reserved.

ail.comsats.net.pk (R. Samar).
� use the altitude change points to generate a feasible terrain-fol-
lowing reference trajectory for the vehicle,
� fly the vehicle on the reference path with minimum altitude

error, and
� provide robust stabilization and control during flight.

Various approaches for terrain-following and avoidance have
been discussed in the literature, see for example [1–4]. In [1] an
optimization problem is set up in which cubic splines are opti-
mized to lie close to the underlying terrain. Constraints are satis-
fied at node points which are also the optimization parameters.
The larger the number of node points, the more the number of
optimization parameters and hence the greater the computational
cost. In [5] the vertical path is generated by using a large number of
parabolic segments called the pullup and pushover parabolas. The
parabolas are designed to satisfy the acceleration limits of the
vehicle; terrain peaks are crossed horizontally, with a given clear-
ance. Lu and Peirson [2] formulate the terrain-following problem
as an optimal control problem and suggest a numerical method
for its solution based on an inverse dynamics approach. The time
of flight is included in the objective function and the dynamics of
the aircraft are considered. The analysis however focuses on offline
trajectory planning only and the results are not readily applicable
to real-time onboard implementation. A nonlinear flight control
law for terrain-following is discussed in [3] based on the predictive

http://dx.doi.org/10.1016/j.mechatronics.2010.09.010
mailto:raza.samar@gmail.com
mailto:raza@mail.comsats.net.pk
http://dx.doi.org/10.1016/j.mechatronics.2010.09.010
http://www.sciencedirect.com/science/journal/09574158
http://www.elsevier.com/locate/mechatronics

Fig. 1. A photograph of the experimental UAV.

1 The Global Positioning System.

R. Samar, A. Rehman / Mechatronics 21 (2011) 844–860 845
control method. The controller commands the throttle setting and
the angle of attack directly, hence a separate inner-loop controller
for the angle of attack is required to be implemented. Terrain-
following control of unmanned underwater vehicles has also been
considered using neural networks, where the vehicle is controlled
over varying seabed terrain [6]. In [7] the best turn or heading an-
gle is computed to optimize the integrated terrain altitude and
threats, which are modeled for a mission area. The time of flight
can also be included in the cost function. A genetic algorithm ap-
proach for generation of the vehicle’s trajectory, specially in the
event of encountering a threat is discussed in [8]. Graph-search
algorithms are discussed in [4] in which a search over the set of
feasible trajectories is performed; Dijkstra’s shortest path
algorithm is used. Speedups of the algorithm are also discussed,
however these remain computationally prohibitive for onboard
application in an autonomous mode.

The main contribution of this paper is to provide an integrated
framework for the design of practical algorithms capable of
autonomous terrain-following flight. Real-time implementation
of these algorithms on available computational engines is easily
possible. The terrain-following algorithm is developed first; the
algorithm takes as an input the geographical route (latitude, lon-
gitude information) of the mission track and generates a sequence
of altitude change points and corresponding altitudes. The algo-
rithm is simple and fast and has a performance approaching that
of more sophisticated algorithms [9]. The output of the terrain-
following algorithm is used to generate smooth reference trajec-
tories for the altitude tracking controller to follow. The design
of the altitude controller is then presented followed by a discus-
sion of the flight test results. The emphasis throughout stays on
having real-time capable algorithms suitable for autonomous
application.

This paper is organized as follows. Section 2 defines the mis-
sion plan on which we intend the UAV to fly, and gives defini-
tions of waypoints and altitude change points. Here we also
formulate the terrain-following planning and control problems
in more specific terms. Section 3 develops the basic algorithm
for autonomous terrain-following flight. A sequence of altitude
change points with corresponding leg altitudes are computed.
Comparison with an optimal algorithm based on cubic splines
is also given. A smooth reference trajectory needs to be generated
from the sequence of computed altitude points, this is also dis-
cussed here. Section 4 describes the design of a terrain-following
controller that provides stabilization and tracking control of the
altitude reference trajectory. The controller needs to be robust
and provide precise tracking of the commanded trajectory. Sec-
tion 5 presents the design of an electromechanical actuator em-
ployed for control surface actuation of the vehicle. Flight test
results are presented and discussed in Section 6; Section 7 con-
cludes the paper.
2. Problem formulation

2.1. Assumptions

It is assumed that a two-dimensional route or plan is available
beforehand which may consist of a sequence of turning waypoints
(will be referred to as simply waypoints henceforth). Each of these
waypoints is defined by its geographical coordinates, i.e., latitude
and longitude. In other words we assume that a route in the hori-
zontal plane (over the surface of the earth to be precise) which the
vehicle needs to fly over, is given in terms of its geographical coor-
dinates. The given route may involve straight flight throughout or
straight and turning segments with loiter, depending on the
requirements of a particular mission. The vehicle’s rate of ascent
and descent may be different for straight and turning parts of its
flight. It is also assumed that a digital elevation map (DEM) of
the surface of the earth for the proposed mission area is also avail-
able. The DEM is a map of elevations of points on the surface of the
earth referenced to mean sea level. The dynamical constraints of
the air vehicle in terms of its rates of climb and descent are also as-
sumed to be known. The vehicle is assumed to be equipped with an
inertial navigation unit (INU), aided by GPS,1 for determining the
position of the vehicle during flight. The INU comprises of inertial
sensors (gyroscopes and accelerometers), which have drift and bias
errors. These errors cause an increase in the navigation error with
time, and therefore aiding with GPS measurements is required. We
assume here that the INU error growth rate is fixed and known. To
summarize we consider the following information as given:

� the mission track in terms of latitude and longitude
information,
� the digital elevation map for the mission track,
� the rate of climb (ROC) and rate of descent (ROD) constraints

(these may not be equal, and may also vary for different parts
of the mission), and
� the INU error growth rate.

2.2. Terrain elevation profile

An elevation profile of the terrain is required to be generated
over which the vehicle is being planned to fly (i.e., which corre-
sponds to the given mission track). However as indicated above
the vehicle may not be able to fly exactly over the given track.
Winds, gusts and other disturbances may cause lateral cross-track
errors. Also navigation system errors imply an uncertainty in the
knowledge of the horizontal position of the vehicle. The terrain ele-
vation for the mission must be generated by giving due consider-
ation to these factors. In other words the planning in the vertical
dimension should be robust and insensitive to possible perturba-
tions in the given two-dimensional (horizontal) mission. Terrain
profile information is to be computed as elevation versus range
data.
2.3. The terrain-following problem

The terrain-following problem is to find a trajectory in the ver-
tical plane (flight altitude versus range) that follows the contour of
the terrain underneath with a given clearance while respecting the
dynamical constraints of the vehicle. This then serves as the refer-
ence trajectory for the vehicle to fly on. The idea is to generate a
reference altitude profile for the vehicle that is feasible with re-
gards to the rates of climb and descent, and also maintains a given
clearance above the underlying terrain. The terrain profile as dis-

846 R. Samar, A. Rehman / Mechatronics 21 (2011) 844–860
cussed in Section 2.2 above along with the climb and descent rate
constraints serve as inputs to this problem.

Different performance measures can be used to define the opti-
mality of the solution to the terrain-following problem. Here we
take the total error squared over the entire range as the perfor-
mance measure:

J ¼
Z RF

0
e2dR; ð1Þ

where RF is the final range value (the total distance to be traveled).
The error e is defined as: e = h � T � Cmin, where T is terrain eleva-
tion, Cmin is minimum ground clearance and h is the height to be
computed (on which we would like the vehicle to fly). The error
therefore represents the closeness of the computed altitude h to
the underlying terrain. We define the slope s, the curvature k and
the kink p to be first, second and third derivatives respectively, of
h with respect to range R. Assuming the speed of the UAV to be
approximately constant, the rate of climb (or descent) can be
expressed as: s ¼ dh

dR or equivalently: s ¼ dh=dt
V . The curvature k is ex-

pressed as: k ¼ ds
dR ¼

d2h=dt2

V2 . The kink p is defined as: p ¼ dk
dR or as:

p ¼ d3h=dt3

V3 . The objective function (1) is to be minimized subject to
the following constraints:

0 6 e; ð2Þ
smin 6 s 6 smax; ð3Þ
kmin 6 k 6 kmax; ð4Þ
pmin 6 p 6 pmax; ð5Þ

where the subscripts ‘min’ and ‘max’ refer to minimum and maxi-
mum allowed values for these variables. The curvature and the kink
defined as above in the range domain are analogous to ‘normal
acceleration’ and ‘jerk’ in the time domain. Trajectories that do
not comply with system dynamics and constraints can place
impractical demands on the tracking controller, and therefore must
be avoided.

The terrain-following problem is therefore to compute the
best height h, and at the same time satisfy the above constraints.
The solution to this problem must be capable of online (autono-
mous) implementation. Furthermore if the lateral mission plan
gets changed for some reason, it must be possible to generate
new vertical trajectories quickly and autonomously onboard
the vehicle.
2.4. The tracking problem

The terrain-following algorithm takes into consideration the
dynamical constraints of the vehicle, and thus provides the track-
ing controllers with feasible reference trajectories. Once a refer-
ence altitude profile for the vehicle is available, the next step is
to make the vehicle fly on the prescribed trajectory. The tracking
problem is to design an altitude control system that uses the con-
trol surfaces of the air vehicle (elevators) to control the altitude as
close as possible to the reference value. This altitude tracking must
be achieved in the presence of disturbances such as winds and
gusts, and across the flight envelope of the vehicle. The controller
therefore must exhibit good robustness properties. Furthermore
the control system should also provide stability augmentation dur-
ing various flight maneuvers.
Fig. 2. INU corridor for terrain elevation profile generation.
3. Terrain-following algorithms

We shall discuss two terrain-following algorithms here, the
Stair algorithm and the Optimal Spline algorithm. But first we dis-
cuss generation of terrain elevation data for the mission track.
3.1. Terrain elevation profile generation

If the two-dimensional (horizontal plane) mission track is avail-
able, an elevation profile of the terrain underneath can be gener-
ated easily using the digital elevation map. However as indicated
in Section 2.2 above, there is always a possibility of deviation
(cross-track errors) of the vehicle from the proposed path. This
could be due to imperfect lateral track control of the vehicle, dis-
turbances such as winds or gusts, and uncertainty or errors in
the knowledge of the position of the vehicle. The positional (navi-
gation) errors come about because of the inertial navigation unit
(INU) onboard the vehicle. GPS aiding prevents the errors from
growing too large but in times of GPS outage, the inertial system
errors tend to diverge. Low cost INUs usually employed in UAVs
have low accuracy inertial sensors and the rate of error growth
with time is therefore high. Uncertainty in the knowledge of the
position of the air vehicle thus generally increases with time. This
is shown in Fig. 2 where the corridor of uncertainty centered
around the nominal path of the vehicle is shown to increase with
time (and distance traveled). Each circle indicates the uncertainty
in the position of the vehicle at that range (or distance). The radii
are continuously increasing since the error in the navigation solu-
tion grows with time (and range), and therefore the uncertainty in
position also grows.

Terrain profile is data containing terrain elevation versus range
information. This information is used by the terrain-following
algorithms. However due to the growing position uncertainty of
the vehicle as indicated in Fig. 2, we need to find a robust elevation
profile so that no peaks in the probable region of presence of the
vehicle are missed out. Therefore for a given range, one should pick
the highest value in the region so that chances of ground collision
are ruled out. This is done as follows:

� The entire route is divided into a number of small segments and
arcs. For straight part of the route, a length of say 100 m can be
used. For turns a resolution of 100/Rt radians (equivalent to
100 m) can be used, Rt being the turn radius of the vehicle.
� At the end point of each segment (or arc), a circle is drawn with

radius equal to the navigation error (INU error) expected while
traveling up to that point.
� A maximum of all elevations (for all points inside the circle) is

computed and this value is assigned to the centre of the circle.
� The maximum elevations are stored as elevation data versus

range.

Thus terrain elevation data is obtained which is based on worst
case elevation values.

R. Samar, A. Rehman / Mechatronics 21 (2011) 844–860 847
3.2. Stair algorithm

It is a simple and computationally fast algorithm, ideally suited
for online application. It automatically decides altitude change
points and corresponding heights. The algorithm works on the
given terrain elevation data and generates a set of altitude change
points as a function of distance from the initial or start point. The
inputs to the algorithm are:

� terrain elevation versus range data,
� minimum ground clearance,
� rate of ascent and descent of the vehicle (may be fixed or

varying),
� length of a section or patch (user-defined parameter, discussed

below), and
� minimum separation between a descent and a subsequent

climb (user-defined parameter, discussed below).

The entire route is divided into sections, and the algorithm
works out section heights according to the constraints imposed.
The algorithm consists of the following steps:

Step 1: Divide the entire route into sections (or patches) of
equal length DR (say 5 km); note that the sections we
consider here are not the same as the segments we
considered when generating the elevation profile in
Section 3.1 above. Using terrain elevation data, com-
pute the maximum elevation of all points in a section;
we call this hmax

i for the ith section. Set the section alti-
tude as:
2

4

6

8

10

12

A
lti

tu
de

 (m
)

Fig. 3.
00

00

00

00

00

00

00

Section
hi ¼ hmax
i þ Cmin; ð6Þ

where hi is the section height and Cmin is the minimum
clearance. Collect all section heights h0,h1, . . . ,hn and
find their differences as:
dhi ¼ hiþ1 � hi: ð7Þ
A positive dhi indicates the start of a climb, a negative
dhi indicates a descent (Fig. 3).
Step 2: For the ascent case (positive dhi), select the first point
of the next patch (section) as a node; for descent (neg-
ative dhi) select the end point of the current patch as
the node. These nodes are the ascent end and descent
start points, indicated by dark dots in Fig. 3.
50 100 150
Ground distance (km)

heights and node points versus range for a sample terrain profile.
Step 3: For ascent, join the node (start point of next section)
with the current section by a line with a slope equal
to the rate of climb of the vehicle. Find the point of
intersection of this line with the current patch, if it
does not intersect the current patch, look for intersec-
tion with previous sections. This point is the ascent
start or climb start point. Collect all ascent start points
and embed them in the node point list in order. Note
that if the ascent start point does not lie on the cur-
rent patch but on some previous patch, then all inter-
mediate patches and nodes will be deleted. All ascent
start points become node points.

Step 4: For descent, find the intersection point of a line pass-
ing through the descent node point with the next
patch/section. This line should have a slope equal to
the rate of descent of the vehicle. If there is no inter-
section with the next adjacent section, go to the next
section and so on. The intersection point is the des-
cent stop point, all intermediate sections (and nodes)
where an intersection cannot be found will be
removed. Collect all descent stop points and embed
them in the vector of node points. In this way the
node list is updated with deletion of some node
points, and with appropriate ascent start and descent
stop points, as a function of distance from the start
point.

Step 5: In a valley where the terrain elevation decreases and
then increases again, the scenario becomes complex
and two situations are likely to occur. It may happen
that the descent stop point occurs later (at a greater
distance) than the ascent start point as shown in
Fig. 4. In order to rectify this, and also to have a gap
(g is the specified gap) between descent and the next
ascent, the following procedure is adopted. In Fig. 4
(d1,h1), (d2,h2), (d3,h3) and (d4,h4) are the ranges and
heights of the node points and are known. The first
two nodes are the descent start and stop nodes, the
last two are the ascent start and stop nodes, respec-
tively. The gradients tanh1 and tanh2 can be readily
computed. Also we can write:
F

b ¼ d2 � d3;

H1 ¼ c tan h1) c ¼ H1

tan h1
;

H1 ¼ e tan h2) e ¼ H1

tan h2
;

Now
b ¼ c þ e ¼ H1

tan h1
þ H1

tan h2
;

(d ,h) g

H

H

(d ,h)

(d ,h)(d ,h)

(d ,h)

1θ 2θ

1θ2θ
(d ,h)

b
c e

ig. 4. A descent followed by an ascent with overlap.

Fig. 5. A desc

848 R. Samar, A. Rehman / Mechatronics 21 (2011) 844–860
and therefore
H1 ¼ b
tan h1 tan h2

tan h1 þ tan h2
:

H2 is calculated as:
H2 ¼ g
tan h1 tan h2

tan h1 þ tan h2
: ð8Þ

New node points ðdnew
2 ; hnew

2 Þ and ðdnew
3 ; hnew

3 Þ can be
found as:
dnew
2 ¼ d2 �

H1 þ H2

tan h2
;

hnew
2 ¼ h2 þ ðH1 þ H2Þ;

dnew
3 ¼ d3 þ

H1 þ H2

tan h1
;

hnew
3 ¼ h3 þ ðH1 þ H2Þ; ð9Þ

Old node points (d2,h2) and (d3,h3) are replaced with
new node points ðdnew

2 ; hnew
2 Þ and ðdnew

3 ; hnew
3 Þ in the

node list.
A different scenario occurs when a descent–ascent gap
exists but is less than the specified value g. Now we
raise the descent stop and ascent start points along
their slope lines as follows, see Fig. 5. Here b ¼ d3�d2;

c ¼ H
tan h2

; e ¼ H
tan h1

and it is seen from Fig. 5 that:
g ¼ bþ c þ e ¼ ðd3 � d2Þ þ
H

tan h2
þ H

tan h1
: ð10Þ

Hence H can be found as:
H ¼ ðg � d3 þ d2Þ
tan h1 tan h2

tan h1 þ tan h2
; ð11Þ

and the new node points are:
dnew
2 ¼ d2 �

H
tan h2

;

hnew
2 ¼ h2 þ H;

dnew
3 ¼ d3 þ

H
tan h1

;

hnew
3 ¼ h3 þ H:

The new node points now replace the old ones in the
node list. Note that such scenarios cannot arise in an
‘ascent-followed-by-descent’ case because of the way
the ascent and descent nodes are defined.
3500
Stair algorithm (2.5 km segment length)

Terrain Altitude
Computed Trajectory
Step 6: For the last node point (say F) which could be the
landing point, find the intersection of a line (with
the vehicle’s descent rate as its slope) joining F to
the previous section, and if an intersection with the
previous section does not exist, move to the section
before it and so on until an intersection is found. This
(d2
new,h2

new) g

H H

(d1,h1)

(d2,h2) (d3,h3)

(d4,h4)

2θ

(d3
new,h3

new)

1θ
b

c e

ent followed by an ascent with gap less than the specified value.
intersection point is the final descent start point for
landing. Delete all other node points between this
point and F.

The reference path generated using these altitude change (or
node) points has the vehicle’s rate of climb and descent constraints
built into it; other constraints can be implemented indirectly by
using low-pass filters. As we have seen, a minimum distance (the
user-defined gap g) can be kept between a descent and a subse-
quent climb for a feasible flight profile. After the final node list is
generated, it can be screened so that minor height changes in adja-
cent flight segments can be neglected if these fall within a certain
tolerance. In other words two adjacent sections can be merged into
one if their heights are close to each other; this will avoid unnec-
essary and small climb/descend commands to the control system
of the vehicle.

Terrain-following trajectories computed using the Stair algo-
rithm for different section lengths and a clearance of 100 m are
shown in Figs. 6–8. Fig. 6 shows the trajectory computed with a
section length of 2.5 km, Fig. 7 uses a length of 5 km whereas
Fig. 8 employs a section length of 10 km. The terrain profile is also
shown in the figures in light color. Climb start/end points and des-
cent start/end points are shown as black dots. Rate of climb and
descent constraints are met in each case. A smaller section length
allows a closer following of the terrain profile, but with more
climb/descent maneuvers for the control system to execute. This
could mean greater fuel consumption and more actuator usage.
There is thus a tradeoff between how closely we want the terrain
to be followed, and the climb/descent maneuvering the vehicle will
be required to perform.

The algorithm presented above can be executed quickly in an
onboard computer and can generate a list of altitude change points
(node points) and corresponding segment heights. Next an optimal
cubic spline based algorithm will be briefly discussed that mini-
mizes the cost function (1) and implements all constraints using
sequential quadratic programming. Although not being proposed
for online application, the purpose here is to compare the perfor-
mance to the Stair algorithm discussed above.

3.3. Optimal Spline algorithm

Cubic splines [10] are degree three polynomials that smoothly
connect to adjoining spline polynomials. They provide smoothness
and continuity by ensuring that the value of the function and its
50 100 150 200 250

1500

2000

2500

3000

Range (km)

Al
tit

ud
e

(m
)

Fig. 6. Trajectory computed using the Stair algorithm with segment length of
2.5 km and clearance of 100 m.

50 100 150 200 250

1500

2000

2500

3000

3500

Range (km)

Al
tit

ud
e

(m
)

Stair algorithm (5 km segment length)

Terrain Altitude
Computed Trajectory

Fig. 7. Trajectory computed using the Stair algorithm with segment length of 5 km
and clearance of 100 m.

50 100 150 200 250

1500

2000

2500

3000

3500

Range (km)

Al
tit

ud
e

(m
)

Stair algorithm (10 km segment length)

Terrain Altitude
Computed Trajectory

Fig. 8. Trajectory computed using the Stair algorithm with segment length of 10 km
and clearance of 100 m.

Fig. 9. Range partitioning for cubic splines.

2 The superscript ‘T’ denotes the transpose of a vector or matrix.

R. Samar, A. Rehman / Mechatronics 21 (2011) 844–860 849
first and second derivatives match with those of neighboring
splines. For optimal terrain-following using splines, we divide the
total range into N subintervals each of length DR as shown in
Fig. 9. We now have N + 1 data points and N � 1 interior points.
Let a cubic spline on the ith interval Ri 6 R 6 Ri+1 be defined as:
Hi(R) = h = aiR

3 + biR
2 + ciR + di, which expresses height as a function

of range in that interval. The altitudes h1,h2, . . . ,hN�1 at the knot
points are the optimizing parameters. The heights h0 and hN, and
the gradients at R1 and RN�1 are fixed during the optimization pro-
cess; these correspond to the take-off and landing points, and the
slopes of the first and last splines evaluated at R1 and RN�1. Vehicle
constraints are enforced not only at the knot points but at interme-
diate points along the spline also. Mathematically the spline
continuity and smoothness constraints are written as:

Hi�1ðRiÞ ¼ HiðRiÞ; ð12Þ
d

dR
Hi�1ðRÞ

����
Ri

¼ d
dR

HiðRÞ
����

Ri

; ð13Þ

d2

dR2 Hi�1ðRÞ
�����
Ri

¼ d2

dR2 HiðRÞ
�����

Ri

; ð14Þ
Boundary conditions on the first and last splines are:

H0ð0Þ ¼ h0; ð15Þ
HN�1ðRNÞ ¼ hN ; ð16Þ
d

dR
H0ðRÞ

����
R1

¼ s1; ð17Þ

d
dR

HN�1ðRÞ
����
RN�1

¼ sN�1; ð18Þ

We thus have a total of 4N constraints (conditions) to compute
the N splines; the splines have four coefficients each. The optimiza-
tion problem is now to minimize (1) subject to constraints (2)–(5),
(12)–(18). This is a nonlinear problem and different algorithms can
be employed; we use sequential quadratic programming (SQP) for a
solution to this problem. At each major iteration, an approximation
of the Hessian of the Lagrangian function is made which is then
used to generate a quadratic programming (QP) subproblem. The
solution to this subproblem is then used to form a search direction
for a line search procedure. Each QP subproblem minimizes a qua-
dratic approximation of the Lagrangian function subject to a linear
approximation of the constraints. The approximations are carried
out using Taylor series expansion. The QP subproblem is to mini-
mize the quadratic objective function:

Fð�hÞ ¼ 1
2

�hTH�hþ yT �h; ð19Þ

subject to linear equality and inequality constraints:

A�h ¼ a; ð20Þ
B�h P b; ð21Þ

where �h ¼ ½h1; h2; . . . ; hN�1�T denotes the optimizing parameter vec-
tor, y is the gradient vector, H is the positive definite Hessian ma-
trix, and A, B, a, b are matrices of appropriate dimensions defining
the constraints.2 For details regarding the sequential quadratic pro-
gramming algorithm, the reader is referred to [11,12]. The Optimal
Spline algorithm proceeds as follows:

Step 1: Start with an initial guess of altitudes at the knot points.
Step 2: Invoke the SQP algorithm which will find the optimum

parameters (heights) by repeatedly solving QP subprob-
lems. As the algorithm iterates to converge to a solution,
the optimizing parameters hi are used to compute splines
satisfying constraints (12)–(18) in each iteration cycle.
These splines are evaluated at the knot points plus all
intermediate points, the constraints (2)–(5) are then

0 20 40 60 80 100 120 1400

200

400

600

800

1000

1200

1400

 Range (km)

A
lti

tu
de

 (m
)

Terrain elevation
Stair algorithm
Optimal spline algorithm

Fig. 10. Terrain-following trajectories for Stair and Optimal Spline algorithms
(4 km section length).

0

2

4

6

8

10

12

14

16

Spline-5 km Spline-10 km Stair-5 km Stair-10 km

km
2

Mean of the integrated errors over smooth & moderately
smooth terrains for 100 runs

Smooth
Moderately
smooth

Fig. 11. Mean of the integrated errors for 100 runs of Stair and Optimal Spline
algorithms.

3 Although the exponential never attains the next segment’s altitude exactly, but
e consider it attained when it comes to within a given tolerance.

850 R. Samar, A. Rehman / Mechatronics 21 (2011) 844–860
evaluated and supplied back to the algorithm. Thus con-
straints (2)–(5) are satisfied not only at knot points, but
at all points for which terrain elevation data is available.

3.4. Comparison of the algorithms

Here we present a comparison of the Stair and Optimal Spline
algorithms. The Stair algorithm is simple and inexpensive, well-
suited for online autonomous application. The Spline algorithm is
based on setting up a constrained optimization problem and solv-
ing it through sequential quadratic programming. In order to com-
pare the algorithms we generate sample terrain elevation data
using terrain models. Gauss–Markov terrain models are used, as
discussed in [13]. Different types of terrain can be modeled,
namely smooth, moderately smooth, moderate, moderately steep
and steep; the standard deviation of the terrain elevation increases
as the terrain categories change from smooth to steep.

Both algorithms are tested for different terrain types, results are
discussed below. Fig. 10 shows a sample terrain profile and the
trajectories computed by the two algorithms. The spline trajectory
is smooth as expected and is optimal in the sense of minimizing
the objective function. The output of the Stair algorithm is also
seen for a section length of 4 km; it follows the spline solution.
Smaller section lengths will reduce the difference between the
two solutions. Both algorithms satisfy their respective constraints.
A number of tests run with different terrain profiles indicate that
the Stair algorithm can be used for all types of terrains, whereas
the Optimal Spline algorithm sometimes shows convergence prob-
lems for steep terrains. This is not uncommon for nonlinear
programming based algorithms. For online autonomous use how-
ever, one cannot afford running into convergence issues.

We now present performance comparison of the two algo-
rithms for smooth and moderately smooth terrains. One hundred
terrain profiles are randomly generated for both types of terrain,
and a performance index computed for the two algorithms. The in-
dex is defined as the integral over range of the difference between
the actual terrain and the trajectory generated by the algorithm,
i.e.,

R
edR (note that e is constrained to be positive semidefinite).

Section (patch) lengths of 5 km and 10 km are used and the results
shown in Fig. 11. The figure shows the mean of the integrated er-
rors for 100 terrain profiles using the two algorithms. The results of
the spline algorithm are shown in the left part of the figure for sec-
tion lengths (DR) of 5 and 10 km. The right part of the figure shows
the results of the Stair algorithm for same section lengths and ter-
rain types. The error reduces for smaller section lengths as the
planned path can follow the terrain underneath with greater preci-
sion. Smaller section lengths may therefore be used for steep ter-
rains. It is seen that the two algorithms show comparable
performance for same section (patch) lengths.

To summarize, the Stair algorithm is seen to offer reasonably
good performance, it is simple and efficient and has no conver-
gence issues. It can therefore be employed in an autonomous
mode. The output it produces consists of altitude change points
and heights as a function of range. The rate of climb and descent
constraints are not violated. However the trajectory so generated
has sharp corners and is not smooth. We will now propose a simple
method to use the Stair algorithm’s output and generate a smooth
trajectory which is well-suited for tracking controllers.

3.5. Trajectory smoothing

The output of the Stair algorithm consists of straight and
slanted lines, indicating level flight, a climb with the specified rate
of climb, or a descent with the specified rate of descent. The lines
intersect at node points creating sharp corners where a sudden
change in the altitude profile takes place. If this profile is directly
given as an input to the tracking controller, the derivative part of
the controller will produce large control signals corresponding to
these corner points, possibly saturating the actuators. Large spiky
commands for actuators are not desirable. Furthermore at the des-
cent stop nodes, the sudden change in slope (say from a descent
rate of �0.1 to zero), will not be tracked exactly by the vehicle. A
vehicle in flight with a certain rate of descent can only level off
in finite time, and hence there will always be an undershoot (the
actual altitude of the vehicle falling below the desired level) at des-
cent stop nodes. Similarly ascent stop nodes will have overshoots,
which is also undesirable. The undershoots are however more dan-
gerous since the actual clearance of the vehicle from the underly-
ing terrain will reduce, increasing chances of ground collision.

This problem of overshoot and undershoot can be largely elim-
inated by replacing the sharp corners of the reference trajectory at
the ascent/descent stop nodes by exponentials of the form 1 � e�sr,
where s is the time constant of the exponential and r is the range.
The range r is initialized to zero at the instant the switching takes
place from the straight line slope to the exponential part, and in-
creases thereafter. The straight line is continued with the pre-
scribed rate of climb (or descent, whichever is applicable) until a
small height difference Dh remains to the next altitude segment.
Thereafter the exponential part starts and continues till the next
segment’s altitude is attained.3 The constant s and the height
w

120 125 130 135 140 145 150 155 160
1200

1250

1300

1350

1400

1450

1500

1550

1600

1650

1700

Range (km)

Al
tit

ud
e

(m
)

Trajectory smoothing using an exponential function

Fig. 12. Trajectory smoothing by using an exponential function.

128 130 132 134 136 138
1200

1250

1300

1350

1400

1450

1500

Range (km)

Al
tit

ud
e

(m
)

Trajectory smoothing through first order filtering

Fig. 13. Trajectory smoothing using a first order filter.

R. Samar, A. Rehman / Mechatronics 21 (2011) 844–860 851
margin Dh depend on the dynamics of the particular vehicle and can
be easily tuned through simulation. The exponential part is given by
Dh(1 � e�sr). Fig. 12 shows a section of the trajectory where the
sharp corners at the ascent end points are replaced with the expo-
nential function. The same technique can be used at the descent
end points also. The final step in smoothing the reference trajectory
is to pass it through a low-pass filter, e.g., of the form a

sþa, ‘s’ being the
Laplace variable. Fig. 13 shows the effect of passing the reference tra-
jectory through a first order low-pass filter. The corners at the as-
cent/descent start points are also smoothed out. The order of the
filter and the cutoff frequency can be selected based on the quality
of smoothness required. In the authors’ experience a first order filter
suffices for most applications.
4 Note that the primed axes are the intermediate axes obtained while going from
the navigation to the body frame through the w, h, / rotation angles.
4. Tracking controller design

A simplified block diagram of the overall terrain-following guid-
ance and control system is shown in Fig. 14. Terrain elevation data
for the given mission track is generated first using the digital ele-
vation map. The uncertainty in the vehicle’s position in following
the given mission is also considered and catered for. The terrain-
following algorithm uses the elevation data and knowledge of
the vehicle’s constraints to compute a reference trajectory for the
vehicle in the vertical plane. href in the figure indicates the refer-
ence altitude for the vehicle to fly on. The actual height h of the
vehicle is fed back and compared to href, the altitude controller is
designed to track the reference altitude and drive the error to zero.
Control of altitude is achieved through control of the vehicle’s pitch
angle h. The inner pitch control loop follows the pitch reference
commands generated by the altitude controller. Body pitch-rate q
is also fed back through a gain for stability augmentation.

4.1. The plant model

The roll and pitch angles of the vehicle are measured by a ver-
tical gyro. This gyro has very fast dynamics as compared to the
vehicle, and so this sensor is modeled as a simple gain in the feed-
back loop. The actuator dynamics are modeled by a fourth order
transfer function as discussed in Section 5.1 below. The model of
the UAV for controller design is taken as a linear approximation ob-
tained at a cruise altitude of 2000 m and a speed of 50 m/s. The
flight envelope however consists of an altitude range from 10 to
5000 m and a speed range from 35 to 60 m/s. A number of linear
models are available across the flight envelope to test the robust-
ness of the control system at different operating conditions. Note
that the vehicle model has one input and three outputs (measured
variables). The control input is the elevator deflection command to
the actuators. The outputs are the pitch angle h, body-axes pitch-
rate q and the altitude h. The computation of the pitch-rate and
its filtering is discussed below. Feedback of the pitch-rate is consid-
ered useful for providing damping to the short-period mode of the
vehicle. The vertical gyro however does not provide measurement
of angular rates, it only measures roll and pitch angles. A magnetic
sensor on the vehicle senses the heading angle w, the dynamics of
this sensor are also assumed fast and neglected. The height is
sensed by the air data system (which measures the pressure alti-
tude) onboard the vehicle. Body angular rates are computed from
attitude angles as follows.

We define a navigation axis system (Xn Yn Zn) in which the Zn

axis is upwards along the local vertical, and the Xn and Yn axes
are in the local horizontal plane directed eastward and northward,
respectively. The (true) heading, pitch and roll angles are denoted
by w, h and / respectively, and these rotations occur in this specific
order to align the navigation axes with the body axes. The heading
rotation occurs first about the Zn axis, followed by the pitch rota-
tion about the X0n axis, finally followed by the roll rotation about
the Y 00n axis.4 Resolving the Euler angle rates _w; _h and _/ into body
axes, we can solve for the body axes rates. Denoting the roll, pitch
and yaw rates in the body axes by P, Q and R respectively, we have:

P ¼ _w sin hþ _/; ð22Þ
Q ¼ _h cos /� _w cos h sin /; ð23Þ
R ¼ _h sin /þ _w cos h cos /; ð24Þ

It may be noted that the attitude sensors measure the body an-
gles and not their rates. The derivatives of the attitude angles are
computed by fitting a least-squares line to n consecutive attitude
measurements. We have chosen n = 4 here as we have seen it to
yield good results; the derivative thus computed has enough noise
smoothing and an acceptably small time delay. However other
choices for n can be made depending on the application and on
the sampling time of the attitude sensor measurements. If for
example the pitch angle measurements from the vertical gyro are
denoted by h0, h1, h2 and h3, where h0 corresponds to the current

Fig. 14. Block diagram of the overall terrain-following system.

1 1.2 1.4 1.6 1.8 2
−10

−8

−6

−4

−2

0

2

4

6

8

10

Time (sec)

w=10 rad/s

actual
computed

Fig. 15. Delay introduced because of the four-point derivative approximation.

40 45 50 55 60
−5

−4

−3

−2

−1

0

1

2

3

4

5

Time (sec)

Pi
tc

h−
ra

te
 (d

eg
/s

ec
)

computed
measured

Fig. 16. Measured and computed pitch-rates during test flight.

852 R. Samar, A. Rehman / Mechatronics 21 (2011) 844–860
measurement and h3 corresponds to the measurement taken three
samples previously, then the slope of the least-squares line for
these points approximates the derivative [14]:
_h � 3h0 þ h1 � h2 � 3h3

10Dt
; ð25Þ
Here Dt is the time interval at which the angle h is sampled (20 ms
for our case). This approximation of the derivative by slope of a
four-point least-squares line gives a good compromise between
sensitivity to measurement noise and the delay introduced into
the estimation of _h. Fig. 15 shows the delay between the actual
and computed derivatives for a pure sinusoid of frequency 10 rad/
s, which is about 25 ms. A test flight was carried out in which a rate
sensor was specially installed on the vehicle for validation purposes
only; this sensor is not available for feedback control otherwise. The
comparison between the measured and computed pitch-rates
shown in Fig. 16 indicates the validity of the approximation. It is
thus concluded that the approximation (25) can be used for Euler
angle rate estimation from attitude measurements, and thereafter
(22)–(24) can be employed for transforming the Euler angle rates
into body-axes angular rates which are used for feedback control.
This method of estimating body rates and using them for feedback
is seen to work well for normal flight maneuvers.
4.2. H1 loop-shaping design procedure

For controller design, we shall use the H1 loop-shaping design
procedure proposed in [15]. The procedure is intuitive as it is based
on the generalization of classical loop-shaping ideas. The open-
loop plant, once given the desired loop-shape, is robustly stabilized
against coprime factor uncertainty. The resulting controller has
been shown to enjoy some favourable properties, such as no
pole-zero cancellation occurs in the closed-loop system (except
for a certain special class of plants), see [16]. In addition, the con-
trollers thus designed have been successful in various applications;
examples are those described in [17–20].

In practical design applications, the performance specifications
are first translated into the frequency domain, and the open-loop
plant’s frequency response is given the desired shape. This is
achieved by augmentation of the nominal plant model G by a suit-
able compensator (or weighting function) W. The shaped plant
Gs = GW is then robustly stabilized against coprime factor uncer-
tainty, and the controller K1 thus obtained is cascaded with the
weight W to obtain the final controller K = WK1. It can be shown
that the controller does not significantly alter the specified loop-
shape provided a sufficiently small value of the cost c is achieved,
for details refer to [20].

We now outline a design procedure for designing controllers
based on open-loop shaping and robust stabilization of the normal-
ized coprime factors of the plant. The procedure consists of the fol-
lowing main steps:

R. Samar, A. Rehman / Mechatronics 21 (2011) 844–860 853
1. Plot the frequency response of the open-loop plant G(s). Based
on the desired bandwidth of the feedback loop, decide upon a
crossover frequency for the open-loop transfer function.

2. Select a suitable weighting function W(s) to give the plant a
desired open-loop shape. The crossover frequency should be
adjusted close to the desired bandwidth. Also W(s) should be
designed to give a roll-off of�1 (or�20 dB/decade) at the cross-
over frequency. Build the shaped plant Gs(s) = G(s)W(s) and cal-
culate the optimal cost copt [15]. A high value (typically >10) of
copt indicates that the specified loop-shape is inconsistent with
robust stability; in such a case the weighting function W should
be modified.

3. Use a slightly sub-optimal value of c and compute the corre-
sponding controller K1.

4. Cascade the controller with the weight W to compute the final
controller K = WK1. Controller order reduction may be per-
formed if desired.

5. Form the closed-loop and check the appropriate performance
and robustness measures against the given specification.

4.3. Controller design

A simplified block diagram of the stabilization and tracking con-
trol system is shown in Fig. 17. The sensed variables of the air vehicle
are the pitch (h) and roll (/) angles measured by the vertical gyro,
the heading angle (w) measured by the magnetometer, and the
height (h) sensed by a barometric air data system. The pitch-rate
estimation block uses the three attitude angles and generates an
estimate of the body pitch-rate (q) which is fed back through the
gain kd to the elevators for improving damping of the short-period
mode of the vehicle. The pitch controller Kp = WpKp1 provides pitch
angle tracking control so that the actual pitch angle follows the ref-
erence angle href generated by the outer loop. Wp is the weighting
function for design of the pitch control loop, and Kp1 is the H1 con-
troller as discussed above (Section 4.2). The outer loop is the altitude
tracking loop; the altitude controller Kh = WhKh1 generates the pitch
reference command in order to make the actual altitude h track the
reference altitude href computed by the terrain-following algorithm.

4.3.1. Pitch controller design
The model of the UAV for controller design is taken as a linear

approximation at a cruise altitude of 2000 m and a speed of
50 m/s. The actuator dynamics are modeled by a fourth order
transfer function (Section 5.1). The delay sd due to the pitch-rate
estimation algorithm is modeled by a second order Padé
approximant:

e�sds ffi 1� sds=2þ ðsdsÞ2=12

1þ sds=2þ ðsdsÞ2=12
:

Now the pitch-rate feedback gain kd is adjusted to get a well-
damped short-period mode for the plant. A damping ratio of 0.55
for the short-period mode is considered satisfactory. We now pro-
Fig. 17. Block diagram of the
ceed with the design of the controller following the procedure gi-
ven in Section 4.2. We denote the plant transfer function with
the pitch-rate feedback in place by Gp(s); the actuator transfer
function is also included.

1. It is desired to have a bandwidth of approximately 8–10 rad/s
for the pitch control loop. The crossover frequency of the
open-loop transfer function Gp(s)Wp(s) should therefore be
adjusted in this range.

2. The weighting function Wp(s) is chosen as follows:
tracking
WpðsÞ ¼ k
ðsþ 1Þðsþ 3Þ

ðsþ 70Þðsþ 0:0225Þ EðsÞ;
where k is a gain to adjust the crossover frequency at the desired
value, and E(s) denotes an elliptic filter transfer function. Elliptic fil-
ters are low-pass filters that are well-suited for filtering of resonant
lightly damped modes of a flexible structure. Flight structures have
to be light weight and therefore cannot be very rigid, also flutter
modes have to be guarded against. Furthermore sensor noise is al-
ways present, and therefore low-pass filters in the loop are useful.
The phase lag effect of these filters at the crossover frequency how-
ever, has to be considered carefully. Elliptic filters have been found
to be particularly useful for such applications [21]. The filter chosen
here is a third order filter with a stopband attenuation of 40 dB and
a cutoff frequency of 60 rad/s. The term sþ1

sþ70 is a lead compensator to
give adequate phase lead at the crossover frequency, whereas the
other term sþ3

sþ0:0225 is a lag filter to boost the low-frequency gain
for good disturbance rejection and command following at low fre-
quencies. The frequency response of the original plant Gp(s) and
the shaped plant Gp(s)Wp(s) is shown in Fig. 18, the crossover fre-
quency is adjusted to 7 rad/s. The optimal cost copt is computed to
be 1.88 which is deemed acceptable.
3. A slightly suboptimal c of 1.98 is selected and the controller Kp1

computed.
4. The complete controller Kp = WpKp1 is now formed. The control-

ler has 18 states, it is reduced to 11 states using optimal Han-
kel-norm approximation [22]. The reduced controller is
discretized using the bilinear (Tustin’s) method for onboard
implementation.

5. The magnitude plot of the sensitivity function is shown in
Fig. 19. The figure shows adequate disturbance rejection on
the pitch angle for frequencies less than 3 rad/s. The flight enve-
lope is shown in Fig. 20, which ranges from ground level to
5000 m in altitude, and from 34 m/s to 61 m/s in forward speed.
A number of linearized models are taken along the periphery of
the envelope as shown in the figure. Step responses for these
models using the designed controller are given in Fig. 21. The
controller performs acceptably well throughout the envelope,
the robustness of the design is thus illustrated.

4.3.2. Altitude controller design
The closed-loop transfer function of the pitch control system dis-

cussed above forms the plant for design of the altitude controller.
control system.

−150

−100

−50

0

50

M
ag

ni
tu

de
 (d

B)

10
−1

10
0

10
1

10
2

−360

−270

−180

−90

0

90

180

Ph
as

e
(d

eg
)

Bode Diagram

Frequency (rad/sec)

Plant
Shaped plant

Fig. 18. Frequency response of the plant Gp(s) and the shaped plant Gp(s)Wp(s).

30 35 40 45 50 55 60 65 700

1000

2000

3000

4000

5000

6000

Speed (m/s)

Al
tit

ud
e

(m
)

 (34.44 , 1000)

 (36.11 , 2000)

 (37.78 , 3000)

 (40 , 3500)

 (42.22 , 4000)

 (44.44 , 5000) (56.67 , 5000)

 (58.89 , 4000)

 (60 , 3500)

 (61.11 , 2000)

 (61.11 , 1000)

Flight Envelope

Fig. 20. The flight envelope of the vehicle.

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

Step responses for different plant models

Time (sec)

Pi
tc

h
an

gl
e

(d
eg

)

854 R. Samar, A. Rehman / Mechatronics 21 (2011) 844–860
The input to this transfer function is the commanded pitch angle href

and the output is the height of the vehicle. The height is sensed by
the barometric air data system, the lag in the sensor and tubing is
modeled as a first order transfer function of the form 1

asþ1. The alti-
tude controller will control the altitude of the vehicle by command-
ing the inner pitch control loop. The bandwidth of the outer altitude
loop is kept a factor of about 10 lower than the pitch loop, this spec-
tral separation ensures no unstable dynamic interaction between
the two loops. The design procedure of Section 4.2 is again followed,
here we summarize the main points. The weighting function Wh(s)

selected is k sþ0:25
sþ3

sþ0:1
sþ0:0001, where the zeros are designed to give phase

lead at the crossover frequency, and the pole at � 0.0001 boosts the
low-frequency gain for accurate altitude tracking in the steady state.
The gain k adjusts the crossover frequency to 0.6 rad/s.

Fig. 22 shows the sensitivity function for the altitude controller
and Fig. 23 shows the response of the altitude controller for a step
demand of 100 m in altitude for various plants in the envelope. The
figure shows good robustness properties of the designed altitude
control autopilot.
10
0

10
1

10
2

10
−1

−45

−40

−35

−30

−25

−20

−15

−10

−5

0

5

M
ag

ni
tu

de
 (d

B)

Sensitivity Function

Frequency (rad/sec)

Fig. 19. Magnitude plot of the sensitivity function 1/(1 + GpKp) versus frequency.

Fig. 21. Step responses for different plant models across the flight envelope.
5. Flight control hardware

5.1. Actuator design

The actuators employed for deflection of control surfaces of the
UAV (the elevators) have to be light weight, compact, reliable, low
cost and capable of long continuous operation to cater for the flight
endurance of the vehicle. These are mounted on the surface (skin)
of the vehicle and coupled directly to the respective control sur-
face. Here we present the design of the actuator and its main char-
acteristics. The actuator is a miniaturized L-shaped 5 N m rotary
electromechanical device. It employs a brushless DC servo-motor,
a rotary reduction harmonic drive and a bevel gear mechanism.

5.1.1. General construction
The actuator converts the high speed, low torque rotary energy

of the drive motor to a high torque, lower speed rotary position
output. This output is sensed and fed back through a potentiome-
ter. The major components of the actuator include a permanent
magnet brushless DC (BLDC) servo-motor, a bevel gear train, a har-
monic drive, a rotary potentiometer assembly, an output shaft and
the main housing (Fig. 24).

10
−2

10
−1

10
0

10
1

−45

−40

−35

−30

−25

−20

−15

−10

−5

0

5

M
ag

ni
tu

de
 (d

B)

Sensitivity Function

Frequency (rad/sec)

Fig. 22. Magnitude plot of the sensitivity function 1/(1 + GhKh) versus frequency.

0 10 20 30 40 50
0

20

40

60

80

100

120

140
Step responses for different plant models

Time (sec)

Al
tit

ud
e

(m
)

Fig. 23. Response of the altitude controller for a step of 100 m for different plant
models in the flight envelope.

Fig. 24. General composi

R. Samar, A. Rehman / Mechatronics 21 (2011) 844–860 855
The working principle of the actuator system is illustrated by
the block diagram shown in Fig. 25. The electronic servo-controller
receives the reference position command from the central flight
computer of the vehicle which runs all control and guidance algo-
rithms in real time. The actual position of the actuator is sensed by
the potentiometer, and compared with the commanded reference.
The position error thus formed is filtered and compensated by the
signal synthesizing circuit, which employs a proportional–inte-
gral–derivative (PID) control logic. It is subsequently converted
to a suitable pulse-width-modulated (PMW) signal, amplified,
and applied to the motor. The output shaft of the motor is coupled
to the stage-1 decelerator, which is a bevel gear mechanism pro-
viding a reduction of about three. The bevel stage drives the wave
generator of stage-2 decelerator, which is a harmonic drive. The
output of the harmonic drive is coupled to the output shaft which
has the feedback potentiometer mounted on it, thus closing the
servo loop. The output deflection of the actuator is ±25�. The speed
at rated load is greater than 70 deg/s and the bandwidth is around
5 Hz.

The motor chosen for the actuator is a three-phase, permanent
magnet brushless DC motor. Such motors have high torque-
to-weight ratios, good dynamic response, are compact and
low-noise. They can operate at high speeds with moderately linear
output (torque versus speed) curves. The selected motor has a
rated speed of 1000 rpm and a rated torque of 0.023 N m.

5.1.2. The gear train
The gears used for speed reduction and torque transmission are

required to be precise to avoid oscillations and achieve the desired
position accuracy with low backlash. Here we use a two-stage
decelerator mechanism. Stage-1 is a bevel gear set with a reduction
ratio of 2.8, and stage-2 is a harmonic drive system. The flex spline
of the harmonic drive has 202 teeth and the circular spline 204
teeth, giving a reduction ratio of 101. The overall gear ratio n
achieved is 282; both gear trains are made from alloy steel. The
harmonic drive has the advantage of no backlash, high gear ratio
and high torque transfer capability within a small volume, thus
yielding a flat, compact surface mount actuator.

5.1.3. Actuator dynamic model
The electrical equation of the actuator motor is given by:

ei ¼ iaRa þ La
d
dt
ðiaÞ þ ka

_#m;
tion of the actuator.

Fig. 25. Working principle of the actuator system.

Fig. 26. A simplified model of the actuator system.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−3

−2

−1

0

1

2

3

4
Sawtooth wave tracking response

Time (sec)

de
g

Commanded
Actual

Fig. 27. Experimental tracking response of the actuator for a sawtooth wave
reference command.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−4

−3

−2

−1

0

1

2

3

4
Square wave tracking response

Time (sec)

de
g

Commanded
Actual

Fig. 28. Experimental tracking response of the actuator for a square wave reference
command.

856 R. Samar, A. Rehman / Mechatronics 21 (2011) 844–860
where ei is the control voltage applied to the motor, ia is the motor
armature current, and Ra and La are the motor armature resistance
and winding inductance, respectively (see Fig. 26). ka is the motor
torque constant and #m represents the motor shaft rotation angle.
The rotational equation of motion is:

Tm ¼ Jm
€#m þ Bm

_#m;

where Tm is the motor torque, and Jm and Bm are the moment of
inertia of the motor armature plus load, and the viscous damping
coefficient of the rotating assembly. The motor torque Tm is directly
proportional to the armature current: Tm = kaia. The rotation of the
actuator output shaft # is related to the motor shaft rotation by
the overall gear ratio or deceleration constant n:# = #m/n.

The nonlinearities in the actuator arise primarily from the volt-
age and current limitation in the control and drive circuits, and the
friction of the moving parts. The friction torque can be modeled as
Tf ¼ kai0sgnð _#mÞ, where sgn(�) denotes the ‘signum’ or ‘sign’ function

Controller

INUINU Data

Serial Link

Analog Data

Serial Link

Digital Data

A
nalog D

ata

Onboard
Equipment

Telemetry GCS

Servo
Amplifier

Power
Converter

section

Onboard
Data

Handling Analog
Discrete

Serial

Flight
Computer

GPS

Fig. 29. Block diagram of the flight control computer.

0 20 40 60 80 100 120 140 160
600

700

800

900

1000

1100

1200

1300

Range (km)

Al
tit

ud
e

(m
)
Altitude tracking: Flight−1

Reference altitude
Actual altitude

Fig. 30. Flight-1: commanded and actual altitudes.

5 Random Access Memory.
6 Electromagnetic interference.

R. Samar, A. Rehman / Mechatronics 21 (2011) 844–860 857
and i0 is the motor no-load current. Neglecting the nonlinearities
we can, using the above relations, derive an open-loop transfer
function of the actuator dynamics relating the output shaft angle
to the control voltage ei as:

#

ei
¼ ka=n
ðLasþ RaÞðJms2 þ BmsÞ þ kas2 :

The actuator has a local PID controller (implemented in the sig-
nal synthesizing/control circuit) with parameters kp, kI, kD, so that
the closed-loop actuator transfer function relating the actual actu-
ator angular displacement # to the commanded displacement #ref

is:

#

#ref
¼ kakDs2 þ kakpsþ kakI

LaJmns4 þ nðJmRa þ LaBmÞs3 þ ðRaBmnþ k2
a þ kakDÞs2 þ kakpsþ kakI

:

ð26Þ

where kp, kI and kD are the proportional, integral and derivative
gains of the PID controller respectively, used for the actuator servo
loop compensation.

5.1.4. Servo control performance
We now present the dynamic performance of the actuator by

carrying out experiments of the prototype unit manufactured.
Tests are conducted to check performance parameters such as
dead-zone, linearity, maximum angular deflection, and bandwidth.
The tracking performance of the prototype actuator is shown in
Fig. 27 for a sawtooth wave reference command. Fig. 28 shows
the tracking performance for a square wave reference input. The
actuator is seen to exhibit good tracking performance with a fast
response time, low overshoot, and small error. The said actuator
exhibits good closed-loop dynamic performance and is found to
be suitable for flight control of the vehicle.

5.2. Flight computer hardware

The flight control computer is an intelligent processing and con-
trol unit. The architectural block diagram is shown in Fig. 29. The
flight computer interfaces with the Ground Control Station (GCS)
via the wireless data-link, the inertial navigation unit (INU), the
GPS receiver, the actuator servo-amplifier unit, and other onboard
equipment such as the air data system, the magnetometer,
onboard cameras, etc. It also houses a test/telemetry port, analog
and discrete inputs/outputs and serial communication ports. The
central processing unit is an Am5�86 double-precision floating
point processor with 1 MB of static RAM5 and 1 MB of flash mem-
ory. The printed circuit boards have a 12-layered design. Special fea-
tures include onboard current and voltage sensing for fault
diagnosis, EMI6 filters on power lines, and design considerations
for low-noise high integrity signal transfer.
6. Flight test results

The vehicle used as a test-bed for demonstrating the efficacy of
the proposed algorithms is shown in Fig. 1. It has a swept-back
trapezoidal wing, a set of (forward) canards for pitch control, and
ailerons on the main wing for roll control. Rudders are mounted
on the vertical tails. The vehicle falls in the low-to-medium cate-

76 77 78 79 80 81 82
850

900

950

1000

1050
Unfiltered and filtered altitude reference

Al
tit

ud
e

(m
)

89 90 91 92 93 94 95 96
850

900

950

1000

1050

Range (km)

Al
tit

ud
e

(m
)

Unfiltered
Filtered

Fig. 31. Filtered and unfiltered altitude command signals.

100 200 300 400 500 600 700 800 900 1000
−5

0

5

10

Pi
tc

h
an

gl
e

(d
eg

)

Pitch angle tracking: Flight−1

Reference pitch
Actual pitch

780 800 820 840 860 880
2

3

4

5

6

7

Time (sec)

Pi
tc

h
an

gl
e

(d
eg

)

Fig. 32. Flight-1: commanded and actual pitch angles.

100 200 300 400 500 600 700 800 900 1000
−2

−1

0

1

2

Pi
tc

h
er

ro
r (

de
g)

Pitch tracking error: Flight−1

100 200 300 400 500 600 700 800 900 1000
−3

−2

−1

0

1

2

3

Time (sec)

Pi
tc

h−
ra

te
 (d

eg
/s

)

Body pitch−rate

Fig. 33. Flight-1: pitch angle error and body pitch-rate.

100 200 300 400 500 600 700 800 900 1000

1

2

3

4

de
g

Angle of attack: Flight−1

100 200 300 400 500 600 700 800 900 1000
−5

0

5
Normal acceleration

m
/s

ec
2

Time (sec)

Fig. 34. Flight-1: angle of attack and normal acceleration.

858 R. Samar, A. Rehman / Mechatronics 21 (2011) 844–860
gory of UAVs in terms of its ceiling and endurance parameters. The
flight envelope covers an altitude range from 10 to 5000 m and a
speed range from 35 to 60 m/s. A piston engine drives the propeller
in a push-configuration and provides a maximum power of 100 hp.
The wing span is 6.5 m, the aspect ratio is around 7, and the aero-
dynamic design provides a maximum lift-to-drag ratio in excess of
10. The maximum take-off weight is 450 kg; the vehicle can stay
airborne up to 12 h carrying high performance surveillance equip-
ment on board.

Several test flights of the air vehicle were conducted over a
period of one year. These were designed to test different aspects
of the aircraft. Results of two test flights (referred to as flight-1
and flight-2 henceforth) are presented below. Figs. 30–34 show
the results of flight-1 and Figs. 35–38 show the results of
flight-2. Fig. 30 shows the reference altitude href and the actual
vehicle altitude as a function of range. The slight drop in the
vehicle altitude at 40 km and 65 km range is due to turn maneu-
vers of the vehicle at these instances. As the vehicle banks to
turn, the lift vector tilts sideways, reducing the upward compo-
nent, thus causing the altitude to drop. The altitude controller
senses this drop and raises the pitch angle demand href. The in-
crease in pitch angle causes the nose of the vehicle to be raised,
increasing the angle of attack, and thus generating the extra lift
required to control the altitude at the desired level. The altitude
tracking is seen to be good with the actual altitude closely track-
ing the reference altitude.

Fig. 31 shows the filtered and unfiltered altitude command sig-
nals. The filtered altitude command is shown in solid line, which is
obtained by passing the unfiltered version through a first order fil-
ter, as discussed in Section 3.5. The filtered signal becomes the ref-
erence altitude that is tracked by the altitude controller. The
tracking performance of the pitch controller is shown in Fig. 32.
The figure shows the reference and actual pitch angles, with the

0 50 100 150 200 250
600

800

1000

1200

1400

1600

1800

2000

2200

Al
tit

ud
e

(m
)

Altitude tracking: Flight−2

Range (km)

Reference altitude
Actual altitude

Fig. 35. Flight-2: commanded and actual altitudes.

200 400 600 800 1000 1200 1400 1600 1800

−2

0

2

4

6

8

Pi
tc

h
an

gl
e

(d
eg

)

Pitch angle tracking: Flight−2

Reference pitch
Actual pitch

1380 1400 1420 1440 1460 1480 1500
−2

−1

0

1

2

3

Time (sec)

Pi
tc

h
an

gl
e

(d
eg

)

Fig. 36. Flight-2: commanded and actual pitch angles.

200 400 600 800 1000 1200 1400 1600 1800
−1.5

−1

−0.5

0

0.5

1

1.5

Pi
tc

h
er

ro
r (

de
g)

Pitch tracking error: Flight−2

Time (sec)

Fig. 37. Flight-2: pitch angle error.

200 400 600 800 1000 1200 1400 1600 1800
1

2

3

4

5

6

de
g

Angle of attack: Flight−2

200 400 600 800 1000 1200 1400 1600 1800
−5

0

5
Normal acceleration

m
/s

ec
2

Time (sec)

Fig. 38. Flight-2: angle of attack and normal acceleration.

R. Samar, A. Rehman / Mechatronics 21 (2011) 844–860 859
lower half of the figure showing a zoomed view of the data. Excel-
lent command following of the pitch angle is observed. It is seen
that an increase in href causes the altitude controller to generate
a larger href, causing the vehicle to climb. Control of altitude is
achieved through control of the pitch angle, and good pitch angle
tracking is seen to give tight altitude control. Fig. 33 shows the er-
ror in the pitch angle (i.e., the difference between the reference and
actual pitch angles). The error stays within ±1� demonstrating the
pitch tracking performance. The body pitch-rate q (Section 4.1) is
also seen in the lower half of the figure. The angle of attack and
the normal acceleration of the vehicle are displayed in Fig. 34.
The angle of attack sensor is installed for test purposes only, it is
not available as a standard sensor for feedback control. The corre-
lation between the climb/descent maneuvers, the pitch angle, the
angle of attack and normal acceleration can be clearly seen from
the figures. During the climb phase the pitch angle is increased
which results in an increase in the angle of attack and the normal
acceleration of the vehicle. The larger angle of attack generates the
higher lift required to climb. It may be noted that a separate speed
control system is also in operation throughout, which throttles the
engine up and down to maintain the speed of the vehicle at a given
level.

Figs. 35 and 36 show the altitude and pitch angle tracking
respectively, for the second flight. The tracking is seen to be tight,
the errors being small. The lower half of Fig. 36 gives a zoomed
view of the pitch response. There is a continuous climb from
1000 m to 2000 m with a slope of 0.092 with almost perfect track-
ing. The vehicle climbs with a (nose-up) pitch angle of about 7.5�.
Fig. 37 plots the pitch error which stays within ±1�. Fig. 38 shows
the angle of attack and normal acceleration. It is seen that the vehi-
cle climbs with an angle of attack of 4–5�.

7. Conclusion

An integrated methodology for the design of an autonomous
terrain-following system is developed. This is done keeping in view
the practical aspects of the problem, and implementation on a
real-time platform. A method for the generation of terrain eleva-

860 R. Samar, A. Rehman / Mechatronics 21 (2011) 844–860
tion data is given which takes into consideration the growing posi-
tion uncertainty of the vehicle with range. An algorithm7 for ter-
rain-following is next developed which is well-suited for online
computation in autonomous flight. The entire route is broken down
into sections of given length, and the height of each section is com-
puted. The climb/descend control effort can be adjusted by varying
the section lengths. Altitude change points and heights are com-
puted that do not violate practical vehicle constraints, while provid-
ing the desired terrain clearance. The performance of this algorithm
is found to compare favorably to an Optimal Spline algorithm. The
design of the tracking control system is next presented. A practical
method for pitch-rate estimation is given. Robust pitch angle and
altitude tracking controllers are designed, which maximize robust-
ness against system parametric uncertainty. The controllers are seen
to perform well across the flight envelope of the vehicle. The design
of an electromechanical servo actuator is discussed which is used to
actuate the control surfaces (elevators) of the vehicle during flight.
Finally flight test results are presented and discussed, these demon-
strate the overall performance of the terrain-following guidance and
control system. Plans are underway to carry out more tests on a
smaller vehicle with shorter and possibly more flexible mission
requirements. Although simulation results indicate no limitation of
the proposed algorithms, however further testing on a range of mis-
sion scenarios is planned to generate more experimental data.

References

[1] Funk J. Optimal-path precision terrain-following system. J Aircraft
1977;14(2):128–34.

[2] Lu P, Pierson B. Optimal aircraft terrain-following analysis and trajectory
generation. J Guid Control Dyn 1995;18(3):555–60.

[3] Lu P, Pierson B. Aircraft terrain following based on a nonlinear continuous
predictive control approach. J Guid Control Dyn 1995;18(4):817–23.

[4] Rippel E, Bar-Gill A, Shimkin N. Fast graph-search algorithms for general-
aviation flight trajectory generation. J Guid Control Dyn 2005;28(4):801–11.

[5] Asseo S. Terrain following/terrain avoidance path optimization using the
method of steepest descent. In: Proceedings of the IEEE 1988 national
aerospace and electronics conference (NAECON). Dayton (OH); 1988.
7 The basic algorithm is called the Stair algorithm; this is then augmented with a
trajectory smoothing algorithm employing an exponential function and a low-pass
filter.
[6] Waldock M, Roberts G, Sutton R. Terrain following control of an unmanned
underwater vehicle using artificial neural networks. In: Proceedings of the IEE
colloquium on control and guidance of remotely operated vehicles. London;
1995.

[7] Twigg S, Calise A, Johnson, E. On-line trajectory optimization for autonomous
air vehicles. In: Proceedings of the AIAA guidance navigation and control
conference. Austin, Texas; 2003

[8] Pettit R, Homer M. An autonomous threat evasion response algorithm for
unmanned air vehicles during low altitude flight. In: Proceedings of the AIAA
1st intelligent systems technical conference. Chicago; 2004.

[9] Rehman A, Shahzad A, Kamal W, Samar R. Techniques for terrain following of
autonomous vehicle. In: Proceedings of the 2nd European conference for
aerospace sciences (EUCASS). Brussels; 2007.

[10] Hoffman J. Numerical methods for engineers and scientists. 2nd ed. New
York: Marcel Dekker, Inc.; 2001.

[11] Betts J. Practical methods for optimal control using nonlinear programming.
Society for Industrial and Applied Mathematics (SIAM); 2001.

[12] Fletcher R. Practical methods of optimization. John Wiley and Sons; 1987.
[13] Kuchar J. Markov model of terrain for evaluation of ground proximity warning

system thresholds. J Guid Control Dyn 2001;24(3):428–35.
[14] Mathews J. Numerical methods for mathematics, science, and engineering.

2nd ed. Englewood Cliffs (NJ, USA): Prentice-Hall; 1992.
[15] McFarlane D, Glover K. A loop shaping design procedure using H1 synthesis.

IEEE Trans Autom Control 1992;37(6):759–69.
[16] Tsai M, Geddes E, Postlethwaite I. Pole-zero cancellations and closed-loop

properties of an H1 mixed sensitivity design problem. Automatica
1992;28(3):519–30.

[17] Samar R, Murad G, Postlethwaite I, Gu D-W. A discrete time H1 observer-based
controller and its application to a glass tube production process. Eur J Control
1996;2:112–25.

[18] Smerlas A, Walker D, Postlethwaite I, Strange M, Howitt J, Gubbells A.
Evaluating H1 controllers on the NRC Bell 205 fly-by-wire helicopter. Control
Eng Pract 2001;9(1):1–10.

[19] Postlethwaite I, Prempain E, Turkoglu E, Turner M, Ellis K, Gubbells A. Design
and flight testing of various H1 controllers for the Bell 205 helicopter. Control
Eng Pract 2005;13:383–98.

[20] Skogestad S, Postlethwaite I. Multivariable feedback control analysis and
design. 2nd ed. West Sussex, England: John Wiley & Sons; 2005.

[21] Samar R. Digital filters for gain stabilization of flexible vehicle dynamics. In:
Proceedings of the 17th international federation of automatic control world
congress. Seoul, South Korea; 2008.

[22] Glover K. All optimal Hankel-norm approximations of linear multivariable
systems and their L1-error bounds. Int J Control 1984;39(6):1115–93.

	Autonomous terrain-following for unmanned air vehicles
	Introduction
	Problem formulation
	Assumptions
	Terrain elevation profile
	The terrain-following problem
	The tracking problem

	Terrain-following algorithms
	Terrain elevation profile generation
	Stair algorithm
	Optimal Spline algorithm
	Comparison of the algorithms
	Trajectory smoothing

	Tracking controller design
	The plant model
	H∞ loop-shaping design procedure
	Controller design
	Pitch controller design
	Altitude controller design

	Flight control hardware
	Actuator design
	General construction
	The gear train
	Actuator dynamic model
	Servo control performance

	Flight computer hardware

	Flight test results
	Conclusion
	References

