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Abstract—Detection and identification of military vehicles from
aerial images is of great practical interest particularly for defense
sector as it aids in predicting enemys move and hence, build
early precautionary measures. Although due to advancement in
the domain of self-driving cars, a vast literature of published
algorithms exists that use the terrestrial data to solve the problem
of vehicle detection in natural scenes. Directly translating these
algorithms towards detection of both military and non-military
vehicles in aerial images is not straight forward owing to high
variability in scale, illumination and orientation together with
articulations both in shape and structure. Moreover, unlike
availability of terrestrial benchmark datasets such as Baidu
Research Open-Access Dataset etc., there does not exist well-
annotated datasets encompassing both military and non-military
vehicles in aerial images which as a consequence limit the
applicability of the state-of-the-art deep learning based object
detection algorithms that have shown great success in the recent
years. To this end, we have prepared a dataset of low-altitude
aerial images that comprises of both real data (taken from
military shows videos) and toy data (downloaded from YouTube
videos). The dataset has been categorized into three main types,
i.e., military vehicle, non-military vehicle and other non-vehicular
objects. In total, there are 15,086 (11,733 toy and 3,353 real)
vehicle images exhibiting a variety of different shapes, scales and
orientations. To analyze the adequacy of the prepared dataset,
we employed the state-of-the-art object detection algorithms to
distinguish military and non-military vehicles. The experimental
results show that the training of deep architectures using the
customized/prepared dataset allows to recognize seven types of
military and four types of non-military vehicles.

Index Terms—vehicle detection, vehicle classification, surveil-
lance, military vehicle, security, military vehicle detection

I. INTRODUCTION

Detection of military vehicles is vital for law enforcement
and defense applications including surveillance, reconnais-
sance, security, tracking etc. These applications typically re-
quire accurate detection and distinction between military and
non-military vehicles in an image. Developing an automatic
algorithm that can potentially distinguish military and non-
military vehicles can not only significantly reduce the work
load of security personnel, but also paves the way for further
high-level cognition to intelligently formalize the future course
of action. Conventionally, the developed approaches aiming to
solve the vehicle detection problem in aerial images focus on
non-military vehicle types [3], [4], [7-9]. They typically rely
on using a sliding window approach composed of hand-crafted
feature extraction followed by a classifier or a cascade of

classifiers. For instance, Liu and Mattyus [3] detected vehicles
with two attributes (orientation and type) on aerial images
using such a cascaded classifier. To localize the vehicles,
it employs a fast binary detector in a soft-cascade structure
whose output is fed as an input to a multiclass classifier for
estimation of orientation and type of the vehicle. Tuermer
et al. [13] employed a series of processing steps to extract
potential vehicular regions that are later classified using a
histogram of oriented features. Cheng et al. [10] performed
pixel-wise dynamic Bayesian network based classification to
detect vehicles for an aerial surveillance application using
color and edge features. Shao et al. [11] utilized an interactive
bootstrapping approach with multiple image descriptors such
as histogram of gradients, local binary pattern and opponent
histogram to train an intersection kernel support vector ma-
chine. Non-maximum suppression is later used to eliminate
false detected vehicles.

Recently deep neural network based architectures, e.g.,
convolution neural networks (CNN), have shown great suc-
cess in object recognition and detection tasks. They have a
powerful, discriminative feature extraction and representation
ability which allows to replace hand-crafted features with deep
features specific for the intended task. Although literature
on military vehicle detection from optical aerial imagery is
quite sparse, several researchers have proposed deep archi-
tectures to detect non-military vehicles in aerial imagery.
R-CNN based detection methods have performed well in
nature scene images [12]. Computational cost for training
and testing was significantly reduced by Fast R-CNN [2] and
Faster R-CNN [6]. They achieved good results on common
detection benchmark datasets. In these techniques, only one
convolutional feature map is shared for the entire image rather
than computing convolutional features separately. Single Shot
Detector (SSD) [15] solves the object detection problem by
avoiding proposal generation and saves computational time by
encapsulating the process into a single network.

While deep neural network based architectures perform very
well in terms of accuracy but generally require a huge amount
of training data which is often not available. Specifically in
the case of military vehicles, no such dataset exists up to the
best of our knowledge. To this end, in this paper, we have
presented a military vehicle dataset. It is composed of 13
classes which are sub-divided in two categories (vehicle and



(a) Military Vehicles

(b) Non-Military Vehicles

Fig. 1. Low-altitude aerial images of real vehicles taken from RPTLY YouTube videos [24] and our collected dataset.

non-vehicle). The vehicle category is further subdivided into
military and non-military vehicle types. We evaluated the state-
of-the-art object detection algorithms including Faster Region
based CNN (Faster-RCNN), Recurrent Fully CNNs (R-FCN)
and Single Shot MultiBox Detector (SSD) on the prepared
dataset due to their remarkable performance on generic object
detection in natural scenes.

Fig. 2. Vehicles from PASCAL VOC 2012 dataset [1].

This paper is organized as follows: Section II discusses
available datasets. The preparation of the dataset is explained
in Section III. Section IV and V focus on experimental setup
and results. The performance analysis is carried out in Section
VL. Finally, Section VII concludes the paper.

II. EXISTING DATASETS FOR VEHICLE DETECTION

Modern approaches in deep learning need annotated train-
ing data. In addition, comparison is required on common
benchmark datasets to establish the most suitable approach
for solving a particular problem. Table I represents summary
of datasets.

Fig. 3. Two sample images from OIRDS Dataset [22].

Our focus in this work is on vehicle detection and more
specifically on military vehicle detection. Dataset from PAS-
CAL VOC challenge [1], contains everyday life objects.
PASCAL VOC dataset consists of 20 classes split into train,
validation and test sets. Among other classes, one of the
target classes in the PASCAL VOC challenge is Vehicle. Some
vehicles from PASCAL VOC dataset are shown in Figure 2.
ImageNet dataset [16] have more than 14 million images and
it is generally used for object detection purposes. However,
it is not designed to accommodate aerial images required for
surveillance and security purposes.

Available vehicle databases mostly contain vehicles with
ground view; e.g. INRIA Car dataset [19] and the ones
presented in [17], [18]. Work on target detection done in [20],
[21] uses aerial imagery but unfortunately the dataset is not
publicly available.

Publicly available dataset OIRDS (Overhead Imagery Re-
search DataSet) [22] contains 180 vehicles in 900 annotated

TABLE I
SUMMARY OF EXISTING DATABASES FOR OBJECT DETECTION
Database Classes | # Instances Folds # Images
PASCAL [1] 20 train / val / test >10,000
ImageNet [16] 21,841 train / val / test | >14,000,000
OIRDS [22] 4 No cut 900
VEDAI [5] 9 2,950 train / test 1,268
3K Vehicle Detection [3] 2 14,235 No cut 20
Our Proposed Dataset 13 23,097 train / val 15,086




(a) Input image containing vehicles

(b) Output image depicting recognition of the vehicles

Fig. 4. The presented system performs localization and detection of real vehicles in low-altitude aerial images taken from our compiled dataset.

images. A few images from that dataset are shown in Figure 3.
It contains five classes of vehicles (‘truck’, ‘pick up’, ‘car’,
’van’ and ‘unknown’). However, no evaluation protocol is
defined for this database and images are not having aerial view
of vehicles that is required for our purpose.

III. DATASET PREPARATION
A. Challenges

Images in datasets, e.g. PASCAL VOC 2007 [1], in general
are composed of only one or a few objects that occupy a high
portion of the image as compared to aerial images. Aerial
Images may contain multiple objects with varying sizes occu-
pying a relatively small pixel-wise area in the image. Currently
the publicly available datasets like DLR 3K Munich Vehicle
Aerial Image Dataset [3] and the Vehicle Detection in Aerial
Imagery (VEDAI) dataset [5], doesn’t fulfill our requirement
since they do not contain any military vehicle. In Figure 5, we
show a representation of vehicles under different conditions.
We propose a dataset that is composed of low-altitude aerial
images containing both military vehicles and non-military
vehicles with varying backgrounds. All experiments in this
paper are performed on our proposed dataset.

B. Data Collection

Our collected dataset is composed of images with several
types of vehicles. We have 13 classes in total. Eleven classes
fall in the Vehicle category while two classes fall in the Non-
Vehicle category. Vehicle category further splits into Military
and Non-Military vehicle categories. The images are collected
from YouTube videos consisting of real vehicles as well as
toy vehicles. The real vehicles dataset was generated through
RPTLY YouTube videos [24] and through publicly available
EPFL Dataset [25], whereas toy vehicle images was generated
from videos by RC Military toy YouTube channel [26] and
other channels [27], [28]. Our dataset is composed of Images
with various resolutions having a top-view angle (low-altitude)
of vehicles. The collected images have a few categories

of military vehicles in cluttered environment, which mimics
real-world application scenarios. These conditions help the
trained algorithms to more accurately identify the type and
the category of the vehicle in practical settings.

Table II shares some details w.r.t. our proposed dataset
(composed of low-altitude aerial images).

TABLE I
DETAILS OF THE VARIATIONS IN IMAGE DIMENSIONS AND IMAGES COUNT
IN OUR PROPOSED DATASET.

# Images 15,086 (11,733 Toy images + 3,353 Real
vehicle images)
Dimensions 1280 x 720, 1280 x 692, 450 x 300, (EPFL

Data set) 360 x 288
1024 x 600

Shape Resizer

C. Data Annotation

Starting from the videos containing military vehicle, we
used VOTT tool [29] to annotate the videos frame by frame
in order to generate our proposed dataset. It generated anno-
tations in PASCAL VOC format for 11 types of vehicles. Out
of the total 15,086 images in our dataset, 11,733 are extracted
from toy videos and 3,353 are from real videos. The collected
data set is annotated for two categories of vehicles (Military
and Non-Military). The images in our dataset contain multiple
objects belonging to multiple classes. The number of each
type of vehicles in our training dataset is shown in Table III.
We have 13 classes which are split into two main categories:
Vehicle and Non-Vehicle category. There are a total of 15,086
images that were manually labeled with bounding box and
type of each object of interest present in them.

IV. EXPERIMENTAL SETUP

In this section, we first focus on architectural configurations.
Afterwards, we briefly introduce details of our dataset. Finally,
we discuss the implementation details of our experiments.
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Fig. 5. A few samples of aerial images taken from toy videos of RC YouTube channel [26], [27].

A. Architectural configuration

1) Feature extractors: For our experiments, we consid-
ered three feature extractors. Resnet-101 [30], which won
competitions of ILSVRC and COCO 2015 (classification,
detection and segmentation). We also used Inception v2 [31],
which set the state-of-the-art in ILSVRC 2014 classification
and detection challenges. Its network employs ’Inception
units’ to increase the depth and the width of a network
without increasing the computational cost. Recently proposed
Inception-Resnet (v2) [32], combines the optimization benefits
by residual connections with the computation efficiency of
Inception units.

2) The number of region proposals: The number of region
proposals to be sent to the box classifier can be chosen at
the test time in Faster R-CNN and R-FCN. In all of our
experiments, we used 300 region proposals.

3) Location loss: For all of our experiments, following [2],
[6], [15], we used the Smooth L1 loss function [33].

4) Training and hyper parameter tuning: For Faster RCNN
we used a batch size of two (because models were trained
using images with different dimensions). For SSD and R-FCN,
we used a batch size of four (we had to reduce the batch
size for memory reasons). Learning rate for Faster RCNN
and RFCN was 0.0003 while that in SSD was 0.004. For
Faster RCNN and RFCN, in configuration settings for images
resizing, min_dimension and max_dimension was set to 600
and 1024 respectively. While for SSD, fixed_shape_resizer
section was added and it’s parameters height and width were
set to 600 and 1024 respectively.

B. Low-Altitude Aerial Imagery Datasets

as shown in Figure 6. The images in our dataset contain
different sizes of objects with varying backgrounds. The main
characteristics of our dataset are summarized in Table II.
It comprises of real data videos and toy data videos. Real
data was acquired from military shows video by RPTLY
Channel and toy data videos used for training were from RC
channel. Images in the dataset are of different resolutions.
We manually annotated collected images in PASCAL VOC
format. Experiments are performed on our low-altitude aerial
images dataset that includes two primary annotated categories
i.e. Vehicle (11 classes) and Non-Vehicle (two classes). Vehicle
category is further sub-divided into two categories i.e. Military
vehicle and Non-Military vehicle. Our dataset contains 15,086
images collected from YouTube videos. For performing exper-
iments, we divided the dataset into 83% training set and 17%
validation set. Performance of a few classes is not good due
to their limited number of annotations and images. Detail of
categories used can be seen in Table III.

C. Benchmarking procedure

Training was performed on a machine having an Intel Core
17-7700K processor with two NVIDIA Titan-X- GPUs having
12 GB memory each. The operating system was Linux Ubuntu
16.04 LTS. For performance comparison of the three architec-
tures, initial fine-tuning on their respective pre-trained models
was performed till 380K steps using our latest dataset with
15K images. We also demonstrated SSD performance using
our proposed military vehicle dataset. Initially pre-trained

TABLE III
THE NUMBER OF INSTANCES OF THE CLASSES BELONGING TO MILITARY, NON-MILITARY AND NON-VEHICLE CATEGORY. IT INCLUDES MILITARY
ARMOURED (M_ARMOURED), HEAVY EXPANDED MOBILITY TACTICAL TRUCK (HEMTT), MILITARY TRUCK (M_TRUCK), HIGH MOBILITY
MULTI-PURPOSE WHEELED VEHICLE (HMMWYV), MILITARY CAR (M_CAR), MILITARY AMBULANCE (M_MEDICS)

Category Military vehicle Non-military vehicle | Non-vehicle
Class Tank | M_Armoured] HMMWV| HEMTT| M_Truck| M_Car| M_Medics| Vehicle
#of instances | 5472 1,724 651 1,039 1,796 231 14 6,291 5,879




(a) Military vehicle category

(b) Non-military vehicle category

(c) Non-vehicle category

Fig. 6. Our collected dataset comprises of three categories (taken from RPTLY YouTube videos [24] and our collected dataset).

model was fined-tuned on collected data (8,476 Images) till
200K steps (1 epoch). Then, it was further fine-tuned on the
same data till 500K steps (two epochs). Afterwards, we fine-
tined ckpt-500K on new data (15,086 images) till 800K steps
(three epochs).

TABLE IV
THE DETAILS OF COMMON CONFIGURATION PARAMETERS FOR TRAINING
TILL 250K STEPS WITH ALL THREE ARCHITECTURES.

Parameters Values

Initial Learning Rate 0.003 (0.004 for SSD)
num_epochs 1

Batch Size 4 (2 for Faster-RCNN)
num_hard_examples 4,000

shuffle True

num_steps 0K—150K—250K—380K

D. Implementation Details

As the training set was of a limited size, we used a pre-
trained model that was trained on COCO (Common Object
in Context) dataset. Experiments were performed using three
state-of-the-art architectures. TensorFlow Object Detection
API [14] was used for training and evaluation. In order
to achieve better results, we fine-tuned values for hyper-
parameters as shown in Table V. We evaluated Mean Average
Precision (MAP) on different training steps. As shown in
Table VI, the results on training ckpt-500K are better than
those achieved by using ckpt-200K. If Intersection-over-Union
(I0OU) ratio is bigger than 0.5 w.r.t. the ground truth box, the
candidate region is selected as a positive sample. Apart from
this, we also analyzed the performance of three state of the
architectures using our dataset.

Table IV shows the settings for training using three architec-
tures for comparison and Table V shows specific configuration
settings for SSD specific analysis.

TABLE V
COMMON CONFIGURATION PARAMETERS FOR TRAINING (200K, 500K
AND 800K STEPS) WITH SSD ONLY.

Parameters Values

Initial Learning Rate 0.004

num_epochs 1

Batch Size 16

num_hard_examples 3,000 / 3,000 / 3,500 / 4,000
shuffle True

num_steps 0K—200K—500K—800K

V. RESULTS AND EVALUATION

We have evaluated the state-of-the-art object detection
methods on our collected dataset. We have selected Faster
R-CNN [6], R-FCN [23] and SSD [15] as our benchmark
testing algorithms for their good performance on general
object detection. The corresponding backbone networks are
Inception-Resnet (v2) [32] for Faster R-CNN, ResNet-101 [30]
for R-FCN and Inception V2 [31] for SSD .

A. Quantitative Results

Three state of the art architectures and feature extractors are
evaluated on the basis of IoU and the average precision (AP)
as introduced in the PASCAL VOC Challenge [1].

AmB‘

AUB )

In Equation 1, A represents the ground-truth bounding
box collected in the annotation while the predicted result
is represented by B. IoU measure is used for evaluation

IoU(A,B) = ‘



of accuracy of an object detector. If the calculated IoU is
greater than the threshold value then the predicted result
is a true positive, else it is a false positive. The ratio of
true positives to the total detections determines the accuracy
of the network. Initially, we trained a model with a small
amount of data and kept on increasing the training data. The
experiment was performed using the same architecture (SSD
with feature extractor Inception v2). The initial pre-trained
model (trained on COCO dataset) was fined-tuned on our
collected data (8,476 Images) till 200K iterations. Afterwards,
it was further fine-tuned till 500K (300K times more) iterations
on the same data. Finally, we increased the amount of training
data and further fine-tuned it on the new Data (15,086 images
which included the previous data as well) till 800K iterations.
Table VI shows that by increasing the training data and fine-
tuning a pre-trained model, the algorithms are able to improve
the weighted average precision for each class. When the model
was further fine-tuned from 500K iteration till 800K iterations,
the weighted average precision did not significantly change
(slightly decreased due to over-fitting).

TABLE VI
THE RESULTS OF THE TOP PERFORMING CLASSES WHEN THE TRAINING
WAS DONE TILL 800K ITERATIONS USING SSD ARCHITECTURE.

Average precision (%)
Inception v2

Feature Extractor—

Total Iterations — | 200K 500K 800K
Class |

Tank 91.21 93.58 94.07
HEMTT 83.31 90.33 94.36
Vehicle 81.54 86.18 86.00
M_Armoured 81.54 90.53 89.40
MAP @ 0.5 IOU 69.63 79.14 77.67

Weighted average precision (%)

Total Iterations — | 200K 500K 800K

Category |

Military Vehicle 83.64 90.27 89.67

Non-Military Vehicle 76.08 86.89 85.56

Non-Vehicle 55.95 79.84 81.16
TABLE VII

THE RESULTS OF THE TOP PERFORMING CLASSES WHEN THE TRAINING
WAS DONE TILL 380K ITERATIONS USING THREE STATE OF THE ART
ARCHITECTURES.

Average precision (%)

Architecture — Faster R- | R-FCN SSD
CNN

Feature Extractor — | Inception ResNet- Inception
Class | ResNet v2 101 v2

Tank 70.55 68.59 81.31
HEMTT 88.46 79.07 13.72
Vehicle 71.53 05.94 26.00
M_Armoured 61.13 51.73 57.89
MAP @ 0.5 IOU 50.69 35.10 32.36

Weighted average precision (%)

Architecture — Faster R- | R-FCN SSD
Category | CNN

Military Vehicle 62.79 57.65 61.56
Non-Military Vehicle 58.88 09.26 31.35
Non-Vehicle 60.72 3743 30.51

We also performed experiments to compare the results of
the three architectures using our latest dataset having 15,086
images. The detection results achieved after performing the
training till 380K iterations show that Faster R-CNN per-
formed better as compared to RFCN and SSD. The results
are given in Table VIIL

B. Qualitative Results

As shown in Figure 4 and Figure 7, the system is able to
classify and localize vehicles in low-altitude aerial images. The
predicted results were compared with the ground truth using
an IoU >0.5 measure. While increasing the training data and
evaluating the performance of SSD architecture, we observed
that training till 200K iterations performed well on classes
like Person, Vehicle, Bus, and Car. Further training till S00K
iteration was able to perform well on unseen data, especially
involving tanks and a few military vehicles.

Fig. 7. The detection results on military vehicles (taken from toy videos of
RC YouTube channel [26], [27]).

Fig. 8. An example of miss-classification in real military vehicles taken from
RPTLY YouTube videos [24].

VI. ANALYSIS OF THE SUCCESS AND FAILURE CASES

Overall, it was observed that two classes i.e. Tank and
HEMTT, performed well in both of our experiments. The
reason behind this is that both classes have more training data
as compared to the other classes. The details of our proposed
dataset are given in Table III. During analysis, we observed
that the presented system had good performance on test cases
and on unseen data, but there were difficulties for some classes
for which the training set size was small. It performs well on



tanks in unseen data as compared to other military vehicles
because the ratio of tank images in the training data is more
than the other classes. Figure 8 shows the results of extensive
fine-tuning (detail in Table VI). The accuracy of the model
drops on the data, on which it was previously performing
better. This is also happening because of the fewer number
of training samples. Figure 8 and Figure 9 show a few cases
of miss-detections and wrong classifications.

Fig. 9. A sample taken from EPFL dataset [25] on which the classification
results were incorrect.

VII. CONCLUSION

We proposed a framework based on deep learning for mili-
tary vehicle detection and classification from aerial images.
This system detects the class and location of military and
non-military vehicles in the captured aerial images. A new
dataset of military vehicles has been prepared by collecting
images captured from real vehicle videos (Military shows) as
well as toy vehicle videos (RC YouTube videos). Furthermore,
our collected dataset contains different scenarios, like size
of vehicles, background variations etc. For selecting the best
suitable architecture for this task, we performed a compar-
ative analysis between different deep-learning architectures
(with feature extractors combination). Experimental results
demonstrate that by applying deep learning based detector
on our proposed dataset, it is able to reliably detect two
different categories of vehicles (with 11 classes). In addition,
two more classes were added to accommodate Non-Vehicle
category. We expect that our proposed dataset will make a
significant contribution to the Military-Defence sector. Our
target for future work is to focus on improving the current
detection results and extend the idea of Military-Vehicles
recognition to work on other surveillance and security related
objects. We demonstrated the performance of three state-of-
the-art architectures for military-vehicle detection purposes.
For SSD architecture, we systematically evaluated per category
detection improvement by tuning its hyper-parameters and

increasing the number of images per category. We proposed
a dataset and hyper-parameters settings for handling small
objects in aerial images for best detection results. As per our
knowledge, it is the first work focusing on military vehicle
detection from aerial images.
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