What's new

Indian Army News & Discussions

India developing indigenous artillery guns

NEW DELHI (PTI): With the army failing to induct new artillery guns in the last 25 years, the Defence Research and Development Organisation (DRDO) has started developing an indigenous 155mm 52 calibre howitzer for the armed forces.

"Armament Research and Development Establishment (DRDO's lab) in Pune is working on developing indigenous artillery guns," DRDO chief V K Saraswat told reporters here.

He said the work on these guns has been on for quite some time now but the agency was "lying low" and focusing on other programmes.

"The laboratory is working on advanced metallurgy for the barrels of the howitzer and is looking at an increased rate of fire in it. We are hoping to complete the development in another four years time," the DRDO chief said.

Asked if there was any specific request from the armed forces to produce the guns, a senior DRDO official said after the Bofors gun deal in 1986, no gun has been inducted in service and it was felt that the Army would need such a gun.

DRDO had earlier developed the 105 mm field artillery guns for the Army and is still in operational service.

DRDO had started working on the development of the Bhim self-propelled howitzer about a decade back but the project was virtually scrapped after South African firm Denel was blacklisted by the ministry.

Despite several attempts, cancellation of tenders due to various reasons has not allowed the army to induct any new artillery gun in the last 25 years after the controversy surrounding the Bofors guns snow-balled into a big political issue.

Talking about the developments in the advanced version of the Arjun Main Battle Tank (MBT) programme, he said, "We are looking to test-fire a missile from its canon and demonstrate that capability by next year."
 
DRDO made 105 mm field gun which was inducted into army and is still operational( and also mainstay). they made 185 mm gun back then also and showed it to army but got rejected as army was interested into sub 155 mm guns, though army later on went for 155 mm guns, but the 185 mm gun was rejected and went to lockers of DRDO. now they took it out and are now working on new technology integration to make it a weapon of 21st century
 
The Arjun Mk2 main battle tank (MBT) — currently under development since mid-2007, will be more expensive and have a higher imported content than its predecessor, the Arjun Mk1. But in terms of mobility, protection and firepower, the Mk2 variant will come closest to what Indian Army HQ wants: an MBT with highly enhanced crew protection and maximum survivability in high-intensity, fire-saturated combat environments. To achieve this, the Defence Research and Development Organisation’s (DRDO) Avadi-based Combat Vehicles Research and Development Establishment (CVRDE) has roped in both Israel Military Industries (IMI) and Elbit Systems of Israel, with the former being responsible for improving the existing Arjun Mk1’s design plus mobility and fuel consumption, redesigning and modifying the various components of the MBT’s hull and turret, and providing consultancy for improving production-line processes. Elbit Systems, on the other hand, will enhance the MBT’s firepower and its accuracy, and provide survivability systems and air-conditioning hardware. The existing Arjun Mk1 MBT, which was formally inducted into the Army’s 75 Armoured Regiment on March 12, comes powered by a MTU 838Ka-501 diesel engine (rated at 1,400hp) coupled to a RENK RK-304A transmission, and can achieve a maximum speed of 70 km/hr (43 mph) and a cross-country speed of 40 km/h (25 mph). A total of 124 Mk1 variants are on order, and will be followed by 124 Mk2 variants, which were ordered by Army HQ on May 17 last year. The Arjun Mk2 will incorporate a total of 93 upgrades, including 13 major improvements. Rollout of the first prototype will take place by this June, and by 2013, the first 30 production-standard Arjun Mk2s will roll out from the Avadi-based, ministry of defence-owned Heavy Vehicles Factory (HVF).



Work on developing the Arjun Mk2 began in the second half of 2007 soon after joint R&D contracts were inked between the CVRDE and the consortium of IMI and Elbit Systems. On October 31 that year, t he CVRDE floated domestic and global expressions of interest for the co-development of a 1,500hp compact high specific power output diesel engine incorporating a state-of-the-art direct fuel injection system, digital electronic controls, turbo-charging, charge air cooling, safety controls and a pressurised multi-stage air-cleaning system; and for a hydro-kinetic automatic tra SESMnsmission with four forward and two reverse gears. Respondents to the CVRDE included Finland-based Wartsila (offering its V8X-1500 1,500hp hyperbar diesel engine coupled with either of France’s ESM-500 transmission or US-based Detroit Diesel Allison’s X-1100-3B transmission), US-based General Dynamics Land Systems offering the EuroPowerPack comprising MTU of Germany’s MT-883 engine along with Renk’s HSWL-295TM transmission, UK-based Perkins proposing its CV12 Condor diesel engine coupled to with the ESM-500 transmission, and US-based Cummins offering a customised QSK-38 liquid-cooled, direct-injection engine coupled to the ESM-500. In late 2009, a combination of the QSK-38/ESM-500 powerpack was selected as the winner, following which Cummins India began customising this powerpack design. The ESM-500 automatic transmission, with five forward and two reverse gears, contains a planetary gearbox with shifting, steering and braking systems. It is also equipped with a hydrodynamic steering system, which allows different turning radii depending on engine speed and selected gear. The braking system contains of two stages. As a parking brake and for a speed of up to 35kph air cooled disk brakes are used. At higher speeds a retarder is used. In addition, the transmission is equipped with a power takeoff for the cooling fans of the powerpack. Also, a hydrokinetic retarder can slow the MBT down at a deceleration rate of 7 metres/square second (0.7g), which can be very useful at the last moment before it could be hit. Supplementing this powerpack will be an indigenously developed auxiliary power unit (APU), which will provide power when the MBT is on ‘silent watch’ for battery recharging and night observation, with full systems operating while the main engine is shut down.

For ensuring MBT survivability, the Defence Metallurgical Research Laboratory (DMRL) — located in Kanchanbagh, Hyderabad — has developed a Mk2 variant of its Kanchan modular armour, which was made by sandwiching composite panels (ceramic, alumina, fibre- glass and nickel-alloy) between rolled homogenous armour (RHA) plates to defeat APFDS or HEAT rounds. At the same time, the DRDO’s Pune-based Composites Research Centre (CRC) and the Research and Development Establishment, Engineers [R&D E(E)], have developed multi-layered multi-functional fibre-reinforced polymer (FRP) composite hull/turret sub-structures at much lower weights in comparison with metallic counterparts. More than 40 per cent weight savings over steel hull structures have been achieved. Also developed for the Arjun Mk2 is co-cured composites integral armour (CIA), which comprises ceramic tiles and rubber sandwiched between two FRP composites layers. While the outer FRP composite layer acts as a cover and provides confinement, the ceramic layer provides primary protection against ballistic impact, and the inner FRP composite layer acts as the structural part as well as secondary energy absorbing mechanism. The rubber layer isolates stiff and brittle ceramic tiles from structural member.



The CVRDE, with IMI’s help, has also redesigned the Arjun Mk1’s turret to incorporate modular sloped armour fittings, and has developed a slat-armour package to protect the MBT against anti-tank rocket-propelled grenade (RPG) attacks. It functions by placing a rigid barrier around the vehicle, which causes the shaped-charge warhead (which uses a shaped-explosion rather than kinetic energy) to explode at a relatively safe distance. For protecting the Arjun Mk2 against tandem-charge PRGs and guided anti-tank missiles, the CVRDE and IMI have co-developed a lightweight non-energetic reactive armour (NERA) package, comprising tiles in which two metal plates sandwich an inert liner, such as rubber. When struck by a shaped-charge’s metal jet, some of the impact energy is dissipated into the inert liner layer, and the resulting high-pressure causes a localised bending or bulging of the plates in the area of the impact. As the plates bulge, the point of jet impact shifts with the plate-bulging, increasing the effective thickness of the armour.

For ensuring fool-proof protection against new-generation anti-armour guided-missiles, the Arjun Mk2 will incorporate both multi-threat warning sensors and an active protection system (APS). The former, supplied by Elbit Systems, comprises four E-LWS sensors that can detect, categorise and pinpoint laser sources, including rangefinders, designators, beam-riders, and infra-red illuminators. E-LWS also enables direction indication for all threats, as well as audio and visual warnings. It is immune to reflection, gunfire, lightning, fire and self-electro-optical operations. The Iron Fist APS, being supplied by IMI, uses two fixed radar sensors to detect potential threats and measures distance and trajectory for providing the APS’ fire-control system (FCS) with data for calculation of engagement plans. The FCS uses two ELTA Systems-built conformal, distributed radars and an infra-red sensor called Tandir, developed by Elbit Systems. When a threat is identified as imminent, an explosive projectile interceptor is launched toward it from either of the two twin-tube rotating launchers housing fin-stabilised launch cannisters. The interceptor, shaped similar to a small mortar bomb, is designed to defeat the threat even when flying in very close proximity. Iron Fist can handle multiple targets simultaneously with different intercept methods, including multiple countermeasures fired at two simultaneous threats at the same sector. Unlike other systems, the Iron Fist uses only the blast effect to defeat the threat, crushing the soft components of a shaped-charge or deflecting and destabilising the guided-missile or kinetic rod in their flight. The interceptor is made of combustible material, and is fully consumed in the explosion. Without the risk of shrapnel, the Iron Fist APS thus provides an effective, close-in protection for MBTs operating in dense, urban environment. Finally, a mobile camouflage system has been developed and integrated into the Arjun Mk2 in collaboration with Sweden’s Barracuda Camouflage Ltd to reduce the vehicle’s signature against all known sensors and smart munitions.

For enhancing structural survivability and firing accuracy, the Arjun Mk2 will do away with the existing electro-hydraulic turret control system (which is susceptible to impact damage and can cause a fire hazard) and will instead use a totally electronic modular electric gun and turret drive stabilisation (EGTDS) system supplied by Elbit Systems. The EGTDS uses azimuth/elevation motor drives with extremely rapid response time, low-voltage power, stabilised modes of operation, and manual back-up drives in both elevation and traverse. A motor drive-control unit transforms the power supply into two 3-phase systems. These supply and control the servo motors for alignment, stabilisation and slave mode of the turret/wea*pon according to the input signals of the sensors, control handles and active sight. The system assures increased safety since it eliminates the need for the hazardous, highly flammable hydraulic fluids. In addition, it offers smooth tracking at all speeds for very heavy turrets and guns and at extreme turret gun positions, while low power consumption leads to low infra-red signature as well as low-noise levels.

The Arjun Mk2 will also incorporate a brand-new Elbit-designed Commander’s panoramic sight (CAPS) — a dual axis stabilised line-of-sight, remote-operated, periscopic system for independent target acquisition, battlefield surveillance and main gun firing in a ‘hunter-killer’ auto-track mode. The CAPS will use a SAGEM-built Matis-STD thermal imager that operates in the 3-5 micron bandwidth, while the gunner’s sight will employ a THALES-built Catherine-FC thermal imager (operating in the 8-12 micron bandwidth. The Arjun Mk2’s turret will also housed an integrated battle management system (BMS) designed by Elbit Systems (and licence-built by Bharat Electronics Ltd), which provides rapid communications networking between the tactical tank commander and his subordinate units. It will enable the tank commander to plan missions, navigate, and continuously update situational awareness. The system will also record data for operational debriefing by using a digital data recorder, which will record and restore sight images and observation data collected during missions. This data can be shared with other elements, using the same network with the BMS, to report enemy targets. Such a concept is rapidly becoming an essential part of the digitised land forces integrated battlefield concept, combining MBTs, anti-armour teams, and attack helicopters in combined arms operations.

The Arjun Mk2’s loader will be able to load the 120mm rifled-bore main gun from a fully automated, fire-proof magazine, which will accommodate up to 10 ready rounds and deliver up to four types of ammunition types to the loader. In addition to APFSDS and HESH rounds, the Arjun Mk2 will make use of IMI-built APAM munitions designed to neutralize — especially in urban built-up terrain — tank-killer squads lurking with lethal anti-tank weapons. The APAM uses the proven concept of anti-personnel munitions based on controlled fragmentation. It deploys sub-munition shrapnel at defined intervals, covering a wide lethal area against soft targets. Each fragment is shaped to have enough kinetic energy to penetrate conventional body armour, or other materials. Also going on board the Arjun Mk2 is the laser-guided LAHAT anti-armour/anti-helicopter round, whose Israel Aerospace Industries-built target designator will be integrated with the MBT’s fire-control system. The tandem warhead-equipped LAHAT has a range of 8km when launched from a ground platform, and up to 13km, when deployed from high elevation. The missile has a 0.7 metre CEP when hitting its target at an angle of 30 degrees. Using the semi-active laser homing guidance method, LAHAT can be designated by the MBT’s gunner or through external designation from ground, mobile, or airborne observers. Firing the round requires minimal exposure in the firing position, and can be directed through the CAPS by only maintaining line — of-sight during missile flight. The missile’s trajectory can be preselected for either top attack (against MBT) or direct attack (against helicopter) engagement.

For improving crew comfort, the Arjun Mk2 will incorporate an Elbit Systems-supplied individual crew and equipment cooling system (ICECS), while will provide cooled and dried air from a special air conditioner to air-cooled overalls or vests. The air will naturally cool the upper torso of each crewman. Also being acquired from Elbit through a transfer-of-technology agreement for the MBT crew are regular/fire-resistant air-cooled overalls, NBC protected air-cooled overalls, and air-cooled compact vests. AS for tank tracks, the Arjun Mk2 will, just like the Mk1, make use of Germany-based Diehl Remscheid’s DST 570V tracks, whose basic components, like the track links, sprocket wheels, guide wheels, running rollers, support rollers, running pads, traction aids, connectors, bolts, mono block-body with integral centre guide, rubberised track pads, and grouser, are all being licence-built by Larsen & Toubro.

Training Aids
CAE of Canada will design and supply a comprehensive suite of Arjun Mk2 MBT training systems enhances combat effectiveness by offering systematic training in a real-time environment through advanced simulation techniques. Earlier, in 2009 CAE had developed and delivered the initial suite of Arjun Mk1 training systems to efficiently and cost-effectively train the driver, gunner and commander. CAE’s suite of Arjun Mk1 training systems currently offers standalone training for the driver and gunner; turret-level training for the gunner and commander; integrated MBT-level training for the gunner, commander and driver; and troop-level training by networking Arjun Mk1 simulators to rehearse troop tactics, movement and joint operations. The Arjun Mk1’s driver trainer provides ab-initio driving and procedural training to individual drivers. Mounted on a six degree-of-freedom (DoF) motion platform, the driver trainer emulates the MBT’s interior cabin with all driver station controls. CAE is also developing a desktop-based Arjun classroom trainer for procedural and familiarisation training. CAE has also developed a comprehensive suite of Arjun Mk1 gunnery training devices to train personnel as they develop gunnery skills and rehearse for target identification, tracking, lasing, and firing drills. CAE’s suite of gunnery trainers includes two separate types and levels of training devices. The desktop gunnery procedures trainer, also called the Agastya simulator, supports initial training in handling the gunner station and firing procedures. The trainee uses MBT-specific controls just like in the actual MBT for familiarisation and procedural training. The turret simulator replicates the interior of the gunner’ and commander’ stations of the MBT. Mounted on a six-DoF motion platform, the turret simulator features a 220-degree by 40-degree open-hatch visual display to provide trainees with the high-fidelity visual cues required for gunnery training.

All Arjun Mk1 training systems can be networked to provide initial and continuation training to the commanders, gunners and drivers at the individual-, crew-, and troop-levels. Along with developing individual skills, the driver and turret simulators create a team environment to support the development of crew teamwork, coordination and tactical skills, decision-making and planning, and crew communications. Through effective training and rehearsal of these skills, the crew can thus improve its proficiency in working as a team and as part of an entire troop during combat operations. The MBT training systems include CAE’s Medallion-6000 visual system with a detailed and realistic external environment view of actual MBT operations, sound simulation system that produces sounds heard during MBT operations and in synchronisation with the motion and visual cues in the training device, simulation host system for software management and software sub-systems that simulate MBT behaviour in real-time operations, content rich geo-specific databases, instructor stations to conduct training exercises and offer evaluation solutions, interface electronic units (IEU) that provide links between MBT crew controls and simulation software, and networking to connect the Arjun Mk1 driving and turret simulators. The training systems provide instructors with an intuitive, easy-to-use interface that enables the set-up of lesson parameters and trainee exercises, monitoring of the progress of the exercise, and full exercise control. The instructor can select the scenario (including target designation), insert malfunctions, and record and replay the exercise. Furthermore, the instructor is able to access the same views as the trainee, such as control of own and enemy tracks. Gunner’s training exercises can be conducted both in plains and desert terrain to include bore sighting, calibration, static tank to static target, static tank to moving target, moving tank to static target, moving tank to moving target, and moving tank to moving target firing practices. The Arjun Mk1 training systems can also be fitted in air-conditioned ISO containers that can be easily transported to different training locations or in-theatre. They can also be modified with minimum adjustments for use with any infantry combat vehicle (ICV) gun, self-propelled artillery, present day tank guns and normal field artillery. The DRDO, meanwhile, has developed a software package called Visualisation with Enhanced Digital Elevation Model and Soil Profile Analysis for MBT Arjun Simulator (VEDSAR) to simulate the MBT’s performance in different kinds of terrain. It uses data from ISRO’s Cartosat-1A remote-sensing satellite, and will help in building a new project named Vehicular Interaction with Soil for Trafficability Assessment and Route-decision Aid (VISTAR), which will provide the army with information on the shortest possible distance between two points, and the kind of obstacles present on the terrain.
http://indian-defense-news.blogspot.com/2011/04/arjun-mk2-will-use-leclerc-and-merkava.html
now wouldnt it be a better idea to induct more of these :chilli::chilli:
^^^
Buddy please take a look at your link as its not working. Is this a new article ? If yes then atleast write the headline....
sorry for that hope its working now
 
^^^
Buddy please take a look at your link as its not working. Is this a new article ? If yes then atleast write the headline....
 
Army's desert exercise enters crucial phase

New Delhi: The Indian Army's massive exercise in the Rajasthan desert entered its crucial phase Thursday with the entire South Command gearing up to test its warfare doctrine in a simulated battlefield environment.

Sudarshan Shakti, as the two-month long war game that began last month is called, is a joint exercise of Pune-based Southern Army Command and Gandhinagar-based South Western Air Command (SWAC).

"The exercise has entered its crucial phase. The training was progressively structured to build on from the smallest unit upwards and today, it is the entire Southern Army, which is being put through its paces in a simulated battlefield environment. In this overall effort, network-centric warfare is one of the crucial aspects being validated," Jodhpur-based defence ministry public relations officer Colonel S.D. Goswami said in a release.

"The endeavour has been to validate and integrate the use of all available assets, including satellites, unmanned aerial vehicles and human intelligence to assist commanders at all levels in taking dynamic and proactive operational action in a fluid battlefield," he added.

Another important facet being validated is the real-time sensor-to-shooter loop, which enables commanders to take instant decisions even as information is shared among platforms and personnel to order the weapons to be deployed.

Network-centric warfare provides shared information of the battle space among armed forces and is an integral part of the ongoing transformational studies.

The Southern Army Command has deployed its most potent formation, the Bhopal-based 21 'Strike' Corps, involving over 50,000 troops and over 200 battle tanks and artillery guns for the exercise, which will go on till middle of December in an effort to train the army units for future battles.
 
http://www4.janes.com/subscribe/jdw/doc_view.jsp?K2DocKey=/content1/janesdata/mags/jdw/history/jdw2011/jdw47649.htm@current&Prod_Name=JDW&QueryText=


India's Ministry of Defence (MoD) issued a global request for proposals (RfPs) on 18 November for 66,000 5.56 mm assault rifle for an estimated ...
24-Nov-2011

---------- Post added at 05:32 PM ---------- Previous post was at 05:32 PM ----------

http://www4.janes.com/subscribe/jdw/doc_view.jsp?K2DocKey=/content1/janesdata/mags/jdw/history/jdw2011/jdw47649.htm@current&Prod_Name=JDW&QueryText=


India's Ministry of Defence (MoD) issued a global request for proposals (RfPs) on 18 November for 66,000 5.56 mm assault rifle for an estimated ...
24-Nov-2011
 
Indian Army's infantry combat vehicle engines to be upgraded

m02009012700001.jpg


New Delhi : India is preparing to upgrade around 1,500 BMP-2 and BMP-2K Infantry Combat Vehicles (ICVs) with more powerful engines to enhance their cross-country mobility, floatation and gradient negotiating capability and mount more lethal weapon systems on board. All of this will make the ICVs robust killer machines.

"The Indian Army is looking for a new power pack with minimum 380 horsepower engine for the BMP-2 and BMP-2K ICVs," a senior defence ministry official told IANS.

The BMP-2 is the main combat vehicle of the Indian Army's Mechanised Infantry regiments used for breaching enemy defences and for troops thrusting forward into enemy territory.

"Since the upgrading of the BMP-2 and BMP-2k ICVs are at an advanced stage, the army wants to get the new engine for the combat vehicles at the earliest," the official added.

At present, the BMP-2 and BMP-2K command vehicles are running on Russian-origin UTD-20 engines, which have been indigenised by India through technology transfer.

The UTD-20 provides a 285 horsepower output that is considered inadequate as it adversely impacts the ICV's functioning.

The UTD-20 is the original engine of the BMP-1 ICV and is being used in the BMP-2 and BMP-2K even though they are more than 1,000 kg heavier.

"A more powerful engine is required to make the BMP-2 more efficient in cross-country mobility, floatation and gradient negotiating, apart from providing it the ability to take more add-on systems and weapons," the official said.

"It is imperative that the existing UTD-20 engine is replaced with a new minimum 380 horsepower engine, thereby offering greater mobility to the BMP-2 and BMP-2K," the official added.

The army is hopeful the new engine will enable the BMP-2 and BMP-2K ICVs to touch 50 kmph during cross-country, 70 kmph on roads and 7 kmph in forward gear during still water floatation.

Indian Army's infantry combat vehicle engines to be upgraded | TwoCircles.net
 
Indian-Russian armies to conduct joint exercise

indra-10-752742.jpg


Indian Army personnel will participate in a war-game with their Russian counterparts in a joint exercise to be held close to Moscow’s boundary with China and Mongolia next year to increase inter-operability between the two armies.

The fourth round of INDRA series of army-to-army exercise between the two countries will be held next year in Russia. The decision was taken recently during discussions with a nine-member Russian delegation, Army officials said here today.

The exercise will be conducted in ‘Cheetah’ training range in East Russia, close to Mongolia-China border, they said.

The two sides have also decided to make INDRA series of joint army exercises an annual affair, which will be held alternatively in India and Russia, the officials said.

So far India and Russia have conducted three rounds of INDRA exercises. The first such exercise was carried out in 2005 in Rajasthan, followed by Prshkov in Russia. The third exercise was conducted in Chaubattia in Kumaon hills some time back.

The exercise is aimed at increasing the inter-operability and mutual understanding between the two armies. It is part of a wide spectrum of ongoing defence cooperation between the two countries, officials said.

Decisions regarding the army unit which will participate in the exercise will be taken in due course of time, they said.

During the past exercises both the countries have gained significantly with each other’s experiences of anti-militancy and anti-terrorist operations in different terrains.

The exercise aims at learning from each other’s expertise in counter-terrorism in urban environment as both India and Russia have significant experience of anti-terrorism operations, officials said.

Besides the army-to-army exchanges, the two countries have also conducted naval exercises under the INDRA series.

Indian-Russian armies to conduct joint exercise | idrw.org
 
Improving the Arjun's already great suspension
by Ajai Shukla
Right%2Brunning%2Bgear%2Bnew.jpg

left%2Brunning%2Bgear%2Bold.jpg

One of the distinctive features of the Arjun tank is its hydro-pneumatic suspension, distinct from and far more advanced than the "torsion bar" arrangement that conventional MBTs (including the T-90) feature. The Arjun's suspension provides a smoother ride, making the tank a more stable gunnery platform that permits more accurate engagement of targets whilst on the move.

The Arjun Mark II features an enhanced version of the Arjun's well-proven hydro-pneumatic suspension, with the new one designed for a 70-tonne load. This is part of an improved "running gear", including the road wheel mountings, the road wheels, axle arms and shock absorbers.

The new suspension has already been tested in the recent trials and run for 1,300 kilometers. In order to obtain an accurate comparison with the earlier suspension, the trial tank was fitted with both: the old suspension on the left side and the new one on the right. The photographs --- in which the new suspension still looks new while the old suspension looks somewhat the worst for wear (not surprising; 1,300 km is a lot of running!) --- point to a successful upgrade.

The Arjun's suspension will be practically all-Indian. The road wheels, which continue to be built by Sundaram Industries, have been improved with better manufacturing and bonding processes for the rubber. Tractor Engineeers Ltd (TENGL), an L&T company, is doing parallel development of the Arjun track (imported so far), including development of one of the most difficult running gear technologies: the track pins.

I am amused at the many who appear to believe that the Arjun is "built entirely of foreign components" that are "hammered together in India". This kind of view is rooted in a deep lack of understanding of the processes of indigenisation. It is true that almost 60% of the cost of the Arjun goes on imported components. Practically all of that goes on just three components --- the power pack; the gunner's main sight (GMS); and the gun control equipment (GCE). Almost all the Arjun's other 10,000-odd component are sourced from Indian industry, which is rising to the challenge. More support from the government, in terms of better procurement procedures, would accelerate this.
 
Brahmos achieves Mach 6.5 speed during lab test

The latest version of Indo-Russian Brahmos cruise missile has achieved a speed of Mach 6.5 during experiments at Hyderabad and the target is to achieve Mach 7, a top DRDO official said here today. "Experiments are being done in Hyderabad. We have completed tests up to Mach 6.5," BrahMos Aerospace Private Limited Chief Executive Officer and Managing Director A Sivathanu Pillai told reporters here. The target is to achieve Mach 7, he said. Mach is commonly used to represent the speed of an object when it is traveling close to or above the speed of sound. BrahMos is a cruise missile that can be launched from submarines, ships, aircraft or land. Inaugurating an International Research Centre developed by Sathyabama University and Indira Gandhi Centre for Atomic Research here, Pillai said nanotechnology is the buzzword in the future and several countries were investing into it. "Over 70 billion US dollars are being spent in this field. Once, this technology is commercialised, it will generate over USD 3 trillion per year," the DRDO scientist said. Nanotechnology will be a boon for the health sector especially to tackle diseases like Alzheimer's. The government has formed a nanotechnology mission and a centre in Bangalore is being upgraded for this, Pillai said.

Brahmos achieves Mach 6.5 speed during lab test, IBN Live News
 
I recently read in a blog that for lsv requirement IA selected Force Motors Trishul lsv. Is it true ? IA didn't go for AXE or Tata's light strike vehicle ?

attachment.php


attachment.php


Recently the Indian Army had placed a tender for 450 Light Combat Vehicles.

TATA , Mahindra and Force Motors had submitted their prototype vehicles.

One of the well talked off vehicle was the Mahindra AXE.

The army tested these vehicles with their own norms; namely:

1) Vehicle reliability and durability testing
2)Resistance to striking and penetration by shells, as well as by mine or grenade
fragment.
3)Vehicle armoring.
4)Tribological testing of materials, including frictional materials.
5)Static and dynamic tests of machinery components' mechanical properties in changing temperatures
6)Physical and chemical tests of material properties, including corrosion-resistance tests
7) Materialography, covering both micro and macrostructures, as well as spectral analysis of materials' chemical composition.

The Indian Army found the "Trishul" Force Motors to be the most satisfactory vehicle for field operations.
Force Motors has received an order of 450 vehicles to manufacture the "TRISHUL" for the Indian Army.

The Trishul is a LWB vehicle on a platform similar to the Gurkha and its pedigree.
The vehicle specifics like weight,GC etc is yet unknown. However it is said that the GC is around 260 mm.
The Trishul has been allocated in 2 engine variants, the MB -OM 611 and the 3650 FTI engine.
 
I recently read in a blog that for lsv requirement IA selected Force Motors Trishul lsv. Is it true ? IA didn't go for AXE or Tata's light strike vehicle ?

Were only Indian companies selected for the tender?
 

Back
Top Bottom