What's new

Air-To-Air Missiles | Command of the air.

fatman17

PDF THINK TANK: CONSULTANT
Joined
Apr 24, 2007
Messages
32,563
Reaction score
98
Country
Pakistan
Location
Pakistan
old article with interesting information...

FEATURES

Date Posted: 22-May-2003

JANE'S DEFENCE WEEKLY - MAY 28, 2003

AIR-TO-AIR MISSILES: Command of the air

Robert Hewson Editor of Jane's Air-Launched Weapons - London

Robert Hewson looks at the current status and future trends of air-to-air missile sales

Today air-to-air missile (AAM) technology is not only leaking into those places deemed 'undesirable', it is being actively bought and paid for at a time when most 'legitimate' budgets worldwide are shrinking. This is especially true around the margins, where some national industries have not recovered from the end of the Cold War and the redrawing of the world's political lines.

The international market for AAMs is largely platform-driven, with weapons sales going hand-in-hand with new aircraft deals. At the same time there is still a vital market for combat enhancements to legacy aircraft. This area is not only important to the major players in the missile business but also it is often where the niche manufacturers shine. International missiles sales are also driven not just by a manufacturer's familiarity with individual platforms, but also by its access to individual national markets. When these are 'sensitive' markets, technology-transfer concerns inevitably follow, because what is on offer is a key warfighting - even a key war-winning - capability.

Four key players account for the bulk of the world's AAM sales and technology base: MBDA Missile Systems in Europe (France, Germany, Italy and the UK); Raytheon Missile Systems in the US; Rafael in Israel; and Vympel in Russia.

China's missile industry is headed by the China National Aero Technology Import & Export Corporation (CATIC). Other important companies, all of which retain a smaller but significant design and production capability, include: South Africa's Kentron, a division of Denel; Germany's BGT; Sweden's Saab Bofors Dynamics; and Taiwan's Chung Shan Institute of Science and Technology (CSIST).

AMRAAM politics

In the minds of many, the weapon of choice for beyond-visual-range (BVR) air combat remains Raytheon Missile Systems' AIM-120 Advanced Medium-Range Air-to-Air Missile (AMRAAM). The AMRAAM is a capable and combat-proven weapon that, thanks to its sophisticated active-radar seeker, gives any user an impressive combined short- and medium-range capability.

The US Department of State has approved AMRAAM sales to more than 20 countries.

Such is the sensitivity that surrounds the AMRAAM and its inherent technology, exports are tightly controlled. This has given rise to 'AMRAAM politics' whereby some allies are judged to be more allied than others leading to a two-tier export system. First-tier customers, those judged to be the most 'reliable friends', are sold missiles that are then held under national control by their respective air forces. Second-tier customers acquire (US-built) combat aircraft that are equipped 'for, but not with' the AMRAAM.

Fluctuating political and strategic criteria has dictated AMRAAM exportability. For years the US would not introduce a weapon into any region where a rival capability did not yet exist. This explains why the South American and Pacific Rim markets, for example, were closed to US high-tech systems for many years - to the growing dismay of manufacturers. The relaxation of this policy that coincided with the arrival of the Bush administration in the White House, was driven largely by sheer commercial pressure.

The seeds of change were sown during the long-running saga of Chile's Caza 2000 fighter competition, which was eventually won by the F-16 Block 50+. The supply of an advanced weapons package, to specifically include the AMRAAM, was a key Chilean consideration. It was whispered to Chile that AMRAAM approval would be forthcoming if a US aircraft was selected instead of the rival Gripen and Mirage 2000 bids - but this turned out not to be the case. Chile was left to find an alternative solution to its air-defence needs and has turned to Israel to provide a complete next-generation missile package.

With a big fighter deal next pending in Brazil, one of the few sizeable requirements anywhere in the world for the next five years or so, the US made a dramatic reversal of policy and announced that AMRAAM capability would be released to Brazil. However, the question of whether the missiles themselves would be delivered remains opaque. While the US is trying to overcome its flawed policy in Chile, there has still been no concrete pronouncement on what Brazil, and other customers like it, can expect. This ambiguity remains a thorn in the side of US industry, facing a rising tide of competition.

The most important future programme, and the one which promises to have the greatest impact on warfighting capability, sales and the missile industry in general is the pan-European Meteor ramjet-powered BVR missile. Headed by MBDA Missile Systems in association with Saab Bofors Dynamics and with input from Boeing, the Meteor will be the future BVR armament for the Typhoon, Gripen and Rafale fighters. A debilitating two-year delay in the programme launch ended in December 2002 when Germany approved funding, leading to the signature of the production contract. Meteor production will begin around 2008 and the missile should enter service with the UK Royal Air Force by the end of the decade. The Meteor has no obvious rivals and, should its development prove a success, it will dominate the 'high' end of the air combat spectrum. However, for most customers the Meteor will not be a consideration for another 10 years and between now and then opportunities in the missile market will fall to others.

For a long time there were few options for nations to acquire an effective BVR missile capability independent of the US. Today the list of alternatives is steadily increasing. From the Mirage III era onwards, France was the only Western supplier of 'non-aligned' BVR weapons through the Matra-developed R530 missile family (the UK exported the Sky Flash, but only to Sweden).

The arrival of the advanced MICA missiles in the 1990s - available in both active radar-guided (MICA EM) and passive IR-homing (MICA IR) - gave customers a truly modern weapon. The disadvantage of the MICA, produced by MBDA Missile Systems, is that it is wedded to Dassault platforms - namely the Mirage 2000-5/9 and the Rafale. MICA missiles are currently in service in France, Taiwan and Qatar and are on order for Greece and the United Arab Emirates. India could soon be a new customer if, as is widely expected, a deal is sealed with France for the acquisition and licence-production of 126 Mirage 2000-5s for the Indian Air Force. The MICA is also at the centre of the Mirage 2000-5BR bid by Dassault and Embraer to meet Brazil's FX-BR requirement. Interestingly, senior Pakistan Air Force (PAF) officials have speculated about integrating the MICA on PAF combat aircraft; such an unlikely move would be rendered impossible by any order from India.

The new players

More recently an entirely new missile option has emerged from a combined Israeli-South African programme, undertaken in secret by Rafael and Kentron. Throughout the 1990s rumours abounded of an Israeli active-radar missile most frequently identified by the codename 'Alto'. The fruits of this labour were revealed late in 2000 when Kentron unveiled the R-Darter missile. This announcement was followed in May 2001 by Rafael's declassification of the Derby. What had long been suspected became immediately apparent - the Derby and R-Darter were a common design.

An important factor in the declassification of the R-Darter (and by extension the Derby) was the decision by Gripen International to offer the missile as an export option on the Gripen. The Gripen has been dogged by the perception that the US content in the aircraft, not least its weapons package, would subject it to US export restrictions. To counter this, the Gripen team has built a weapons portfolio for Gripen customers that is free of any 'strategic interference'. The first evidence of this came in Chile where the Derby (and Python 4) was part of the Gripen bid and is again part of the Gripen bid in Brazil - and elsewhere. In South Africa the R-Darter has already been earmarked to equip the South African Air Force's Gripen force when it enters service in 2008.

Kentron and Rafael are reluctant to discuss the close working relationship that clearly existed between them: the Derby and R-Darter missiles are treated as two separate products. Both are marketed independently, although it is clear that the two companies have divided the world into different regions of responsibility. For example, Kentron is leading the current sales push in Brazil. Rafael, on the other hand, has sold the Derby to Chile where it is being integrated on the air force's upgraded F-5Es. India is reported to be very interested in the newly revealed ground-launched version of the Derby. The great advantage of the Derby and R-Darter is that they are not platform- specific and can be integrated on any combat aircraft with a suitable databus infrastructure.

With the dissolution of the Soviet Bloc came the disappearance of traditional Russian markets and the missile industry is now sustained, barely, by a few key contracts. AAM design, development and production is led almost exclusively by Vympel. It was the emergence of Vympel's R-73 (AA-11) agile dogfight missile that so alarmed NATO planners in the late 1980s and 1990s. The R-73 outclassed every single equivalent Western short-range AAM at the time and the appearance of the RVV-AE/R-77 (AA-12) active-radar missile in the 1990s underlined just how accomplished the Russian designers were. The only brake on their work has been the desperate absence of funding, which is why export contracts have become so vital.

India and China are the two most important customers in this respect. Both nations have acquired R-73s and R-77s to arm their late-model Sukhoi Su-27s and Su-30s, while India has also fielded the R-77 on its upgraded MiG-21-UPG- Bisons (MiG-21-93). The acquisition of R-77 missiles by Peru, along with the MiG-29s that it obtained from Belarus, caused a storm and led directly to Chile and Brazil seeking a similar capability. However, Peru's missiles were never really operational as the air force there lacked the means to support them in service. Other potential users of the R-77 include Malaysia and now Indonesia, the latter of which has signed a new deal with Sukhoi for Su-27s and Su-30MKIs. Work on Vympel's next-generation BVR missile, the ramjet-powered R-77M, is progressing slowly but has so far resulted in little real hardware.

Vympel's existing R-27 (AA-10) should not be forgotten. Already available in long-range passive infra-red- and semi-active radar homing variants, Vympel (working with seeker manufacturer AGAT) has developed an active radar variant, the R-27, that some programme insiders believe is superior to the R-77 in some respects.

At the fringes of the market, work on active-radar missile development continues in China India and Taiwan. Of the three, China is perhaps the most significant. Already well-established in the short-range missile field the highest-priority programme for the Chinese industry is the SD-10 (sometimes referred to as PL-12). The SD-10 is an active-radar medium-range missile that, if successful, would provide a huge step forward in both manufacturing and combat capability for China. It is widely believed that the active-radar seeker technology at the heart of the SD-10 programme has been obtained from Russia, but Chinese specialists have also been striving to master the micro-engineering needed to build these systems and have displayed prototype hardware that gives some indication of the state-of-the-art there.

Previous Chinese attempts to develop the PL-10/PL-11 missile, based first on pirated AIM-7 technology and then with the direct involvement of Italy's Alenia, all failed. The SD-10 programme is in a much more advanced stage of development and has reached the point of airborne firing trials. The SD-10 is likely to equip China's next-generation Chengdu J-10 multirole combat aircraft and also the modified/upgraded variants of the J-11 - Su-27SK built by Shenyang. The SD-10 is most closely associated with the FC-1/Super Seven lightweight fighter, being jointly developed by China and Pakistan. The first prototype of this new aircraft is due to fly later this year and the SD-10 is likely to be part of the baseline weapons fit for Pakistan, and any other export customer - such as Iran.

India has started the first trials of its active-radar missile programme, the Astra. Headed by the Defence Research and Development Organisation (DRDO), the Astra has been in staged development for about 20 years. The first ground-launched aerodynamic trials of the Astra began on 9 May. After three or four ballistic firings the next phase of controlled inflight test launches will begin. The Vympel R-77 is operational on India's Su-30MKIs and upgraded MiG-21-UPG Bisons. The possibility of an MBDA MICA acquisition by India has been discussed. Nevertheless, the Indian Air Force has always maintained a policy of multinational supply and indigenous development, so work on the Astra programme seems sure to continue.

In Taiwan the CSIST has produced the Tien Chien II (Sky Sword II) active-radar BVR missile, operational on the Republic of China Air Force's (ROCAF's) ****-1 Ching Kuo fighters since the mid-1990s. The Tien Chien II programme was motivated by US reluctance to release AMRAAM capability to Taiwan in the face of opposition from mainland China. The Tien Chien II missile has benefited from US design input, but that assistance gives the US a virtual embargo on any potential export sales.

The Tien Chien II has a full active-radar capability that many outside observers were unable to accept until recently. Despite, or perhaps because of this, it will remain a weapon exclusive to the ROCAF. Taiwan has now secured AMRAAM export approval (though this does not include missile stocks) and so, as this is likely to be a more affordable option that the Tien Chien II, the indigenous programme does not have a secure future.

Japan has also developed its own AMRAAM-analogue under the highly classified AAM-4 programme, led by Mitsubishi. Very few facts are known about this project which began in the mid-1980s and has now progressed to advanced firing trials and perhaps a limited service capability. The AAM-4 has been seen on JASDF F-15Js and is probably also intended for the F-2 fighter. The approval of AMRAAM exports to Japan makes the future of the programme unclear, but the AAM-4 will only ever be a national asset with exports barred under Japanese law.

The short-range dogfight AAMs market is larger and more open than that for the heavier, more complex and more expensive BVR missiles. That said, advances in missile and seeker technology mean that there is considerable crossover between the two classes of weapon. For example, the AMRAAM has an effective close-in capability through its active-radar seeker that allows the missile to be launched 'live off the rail' at targets within visual range. Equally, some nominally short-range missiles - like the UK-developed ASRAAM in particular - have a significant fly-out capability that can engage targets at true BVR distances.

The technology base for short-range AAMs is distributed between China, Europe (chiefly France, Germany, Sweden and the UK), Israel, South Africa, Russia and the US. Outside these nations there are varying research and development and production capabilities in Brazil, India, Japan and Taiwan.

The next-generation dogfight missile for the US, and approved export customers of US combat aircraft, is the Raytheon AIM-9X Sidewinder. The AIM-9X is the product of several studies undertaken in the US during the 1980s and 1990s. The result was a radical evolution of the basic Sidewinder, but not the revolution that some had called for. Instead the AIM-9X mates the existing basic structure (warhead and rocket motor section) of the late-model AIM-9M with an entirely new seeker, autopilot and flight-control system and a new aerodynamic layout.

The AIM-9X should be operationally available on US Navy F/A-18C Hornets by September 2003, with USAF F-15Cs to follow. To date, the AIM-9X has been ordered by South Korea (F-15K) and selected by Switzerland (replacing AIM-9Ps on upgraded Hornets) and Poland (F-16 Block 50+). Other potential customers include Belgium, Canada, Denmark, Finland, the Netherlands, Norway, Portugal and Turkey. Other future sales may come from the UAE, Pakistan and Oman - all now F-16 customers.

The European missile industry is in the rather uncomfortable position of having two competing advanced dogfight missile programmes: the Advanced Short-Range Air-to-Air Missile (ASRAAM), produced by MBDA Missile Systems, and the IRIS-T, developed by a six-nation consortium led by Germany's BGT. There is still a clear intention to merge BGT with MBDA at some point in the near future, leaving the enlarged company with two rival products.

The ASRAAM is firmly established in RAF service and was first deployed for combat over Iraq during Operation 'Telic'. The ASRAAM has had a long and sometimes controversial history and its initial introduction into UK service in 2002 was plagued by reports of an under-performing IIR seeker. These problems are now acknowledged to have been solved and the combination of ASRAAM and AMRAAM on the RAF's upgraded Tornado F3 CSP aircraft gives them what, on paper, is arguably the most capable weapons set of any combat aircraft in service today. However, the RAF cannot take full advantage of its ASRAAMs. The service opted for an analogue ASRAAM interface instead of a fully digital integration. This means that the ASRAAM can only be used in an expanded Sidewinder acquisition mode that denies RAF crews the full range of missile functions.

The Royal Australian Air Force (RAAF) is the first ASRAAM export customer. Australia is completing the (fully digital) integration of its missiles on an upgraded F/A-18A Hornet force and, as a result, will be the first user to have the full power of the ASRAAM. Australia already has the AIM-120 operational on its Hornets.

Europe's export hopes

The ASRAAM is very closely linked with continuing Eurofighter sales efforts in Singapore and the Middle East. Usefully, it is also integrated and qualified on the F-16 and F/A-18 (including the Super Hornet) and is ready for the F-15. The ASRAAM has the distinction of being the only current dogfight AAM that is fully compatible with the JSF's internal carriage requirements, thanks to the missile's unique lock-on-after-launch (LOAL) capability. Raytheon says that it is developing this capability for the AIM-9X and it will be available in about five years; but LOAL ASRAAM capability is already part of the December 2003 initial operating capability status of the Australian missiles.

Europe's second short-range missile, the IRIS-T, has had an even more difficult gestation than the ASRAAM. The programme has been plagued by funding shortfalls, primarily from its main partner Germany. The original six-nation team was reduced to five in October 2001 when Canada withdrew on grounds of cost. This move robbed the remaining nations, Germany, Greece, Italy, Norway and Sweden, of the only Hornet operator in the group, and with it the smooth integration of the IRIS-T and F/A-18.

Since Canada's departure, Spain joined the team and the consortium has been lobbying hard for a commitment to order the IRIS-T for the Spanish Air Force. As a Eurofighter customer, Spain fits into the IRIS-T user set alongside Germany and Italy. If the Greek Eurofighter deal is finalised, an IRIS-T order can be expected and Austria may also opt for the IRIS-T now that its 18 Eurofighters seem to be back on track. In Sweden the missile is due to replace the Sidewinder on Flygvapnet Gripens, as the Rb 99. The IRIS-T programme is now on a much firmer footing after the German parliamentary decision in January to commit series-production funding to the missile, and the consortium is looking at a potential order book of many hundreds.

Israel continues to be a centre of excellence in design, building what for many is still the yardstick for agile, high-off-boresight missiles - Rafael's Python 4. The next-generation Python 4 (referred to variously as the Python 4+ or 4M) is expected to be unveiled at the Paris air show in June. This missile may introduce a long-awaited imaging infra-red seeker to the baseline Python 4 airframe, though advance details are sparse. Sales of the Python 4 are shrouded in secrecy. To date, the only confirmed users are the Israel Defence Force/Air Force (F-15, F-16) and Chile's FACh (upgraded F-5E Tigre III). Chile plans to integrate the Python 4 with its new Block 50+ F-16C/Ds and several other South American air forces, such as Ecuador and Brazil, have been linked with the Python 4. Both countries are already Python 3 operators and both are fielding Israeli-sourced fighter upgrades compatible with the Python 4. The Python 4 may also have been evaluated, if not acquired, by Singapore and India.

India is integrating the DASH helmet-mounted sight on its Mirage 2000Hs and has said that the Indian Air Force will field an upgraded Magic III version of its French-supplied Magic II missiles. However, India also claims to be developing an advanced short-range AAM and, given the close links between the DASH system and the Python 4, the Rafael missile must be an option for the Indian Air Force. Similar speculation continues to surround the Python 4 in China. Israel has already supplied China with Python 3 missiles and technology under the PL-8 programme. There are repeated suggestions that a deal has also been done on the Python 4. Speaking to Jane's in 2002, a CATIC missile engineer confirmed China's work on a "new very agile dogfight missile with a highly complex aerodynamic configuration" - a description that certainly matches the Python 4.

China could become a more significant exporter of AAM technology as its aerospace industry is increasingly able to produce aircraft that can exploit modern weapons systems. To date, the bulk of Chinese AAM programmes have been based on outside technology.

With the latest PL-9 missile, China has demonstrated some meaningful indigenous technology, although this programme owes a debt to the PL-8. Chinese AAMs have only been exported with Chinese aircraft, although this has still been a welcome resource for customers such as Burma, Iran, Pakistan, Sri Lanka, and Zimbabwe.

Still deadly

In South Africa work on very advanced missile designs by Kentron has been slowed by a lack of R&D funding. Away from the R-Darter, Kentron's primary programme is the A-Darter (Agile Darter), an enhanced development of the SAAF's U-Darter missile. South Africa has had much insight into Israeli missile technology and the SAAF even fielded the Python 3 as an 'interim' missile (codenamed V3S) in the late 1980s and early 1990s. The A-Darter was intended to be the primary short-range armament for the SAAF's Gripens, but now South African officials have called the future of this programme into doubt and it may be shelved.

Along with its AAM-4 BVR programme, Japan has also developed the short-range AAM-5 - a follow-on to its in-service AAM-3 missile. The AAM-5 is another of Japan's closely guarded projects. Like the AAM-4, the AAM-5 has completed ground and (probably) airborne firing trials, but its operational status is unclear. Outwardly, the AAM-5 resembles the IRIS-T and so follows the AAM-3 in adopting some novel aerodynamic design features. The AAM-5 programme is another example of how Japan supports its own high-tech defence industry, although this support comes with an enormous price tag and may prove unsustainable.

Russian missile designers are also struggling to fund future technology. Improvements to the Vympel R-73 (AA-11) series are still the best on offer. While the R-73 remains a highly effective weapon - especially when combined with a helmet-mounted sight - it is carried by very few platforms like the Su-27/30 family and the MiG-29. Studies for a next-generation Russian missile called 'K-30' have been under way for many years, but despite some recent reports to the contrary this missile remains firmly a paper project. Russia's difficulties are compounded by the fact that the premier Soviet-era optical seeker design and manufacturing house, Arsenal, builders of the R-73's Mk 80 seeker and the next-generation MM 2000, is now located in Ukraine.

Most of the major mergers and re-alignments within the international missile business have now been settled, with just a few notable exceptions. The stage is still set for EADS' subsidiary LFK to properly join the MBDA Missile Systems fold. The full integration of this German company has been predicted for several years now and, in the longer term, it is likely that Saab Bofors Dynamics will join up with the MBDA giant, too.

In the US, Raytheon is assured of market share wherever US combat aircraft are sold. It has also done an excellent job of supporting non-US platforms and, with the AMRAAM and Sidewinder, it owns the two AAM market leaders. Lockheed Martin forged links with Rafael, but progress in the air-to-air missile sector has been blocked by industrial difficulties and Israeli security concerns.

Israel's own industry continues to be sustained by strong national backing and a completely opaque international customer base. South Africa shares some common ground with Israel, but lacks a large national market and the R&D funding to really chase international sales. As in Russia and elsewhere, the question is not one of ability and know-how but in finding the funding to turn expertise into marketable systems.
 
IDEX 2009: UAE, U.S. Reach Deal on AIM-120C-7

ABU DHABI - The United Arab Emirates has struck a deal with the U.S. government to become the first regional user of Raytheon's latest version of the advanced medium range air-to-air missile, the AIM-120C-7.

The governments have signed a letter of agreement that will see just over 220 C-7s delivered to the UAE, said Rico Rodriguez, Raytheon Missile System's business development manager for air warfare programs.

The AIM-120 sale was the first major deal of the IDEX defense show, which opened here Feb. 22.

The new weapon will equip the already formidable Lockheed Martin F-16 Bock 60 fighters now in service with the air force here.

The air force currently operates the less-capable C-5 version of the weapon on the F-16s.

The new weapon offers an upgraded and repackaged guidance system. The weapon has sufficient growth opportunities to meet emerging threats, Rodriguez said.

Aside from the U.S. military, the C-7 is used by Greek and Taiwanese air forces. Finland and South Korea are also in line to operate the weapon.

The missile sale was the second deal announced by Raytheon in the Middle East in the last couple of weeks.

Earlier this month, the company announced its infrared upgrade kits were to equip a variety of Egyptian and Iraqi armored vehicles.

The value of the Foreign Military Sales deal was put at $173 million.

http://www.defensenews.com/story.php...58&c=AME&s=AIR
 
A-Darter undergoes flight trials in South Africa

Helmoed-Römer Heitman JDW Correspondent - Cape Town

The joint South African/Brazilian A-Darter programme has reached the stage where early flight trials and seeker trials are being conducted.

Two A-Darters were launched from a ground rig with a rocket booster at the Denel-owned Overberg Test Range in February to carry out "controlled flights" to evaluate the missile airframe, control systems, manoeuvrability and high- g -force characteristics.

A third ground-launched test flight in April will be used to expand the high- g envelope. The later date scheduled for that test arose because the programme had to be interrupted to free the range for a foreign client.

The seeker trials involved a seeker mounted on a ground rig and another mounted in a pod carried by a Cheetah D trials aircraft. Both sets of trials were aimed at confirming the seeker's acquisition, tracking and flare-rejection capability against different targets and different backgrounds (clear sky, clouds and land); with another Cheetah D, flares and a burner were used as targets.

The next major milestone will be a series of ground-launched guided flights, set to be carried out early in the second half of 2009. Those will be followed by guided flights after launch from a trials aircraft in mid-2010.

Denel is also working with Saab to integrate the A-Darter with the Gripen and expects the missile to achieve initial operating capability in 2012, when the Gripen itself is planned to be fully operational. The South African Air Force (SAAF) has meanwhile acquired a number of IRIS-T missiles to give the Gripen force an interim air-to-air capability by the second quarter of 2009.

The A-Darter is a high-agility air-to-air 'dogfight' missile with a two-colour imaging seeker, using a wingless design and thrust vector control to achieve the desired agility. It is intended to have a mass of less than 100 kg. Full-scale development of the A-Darter began in 2007, once the relevant technology had been established. Development is being carried out at Denel Dynamics by an integrated South African/Brazilian team.

The SAAF plans to use the missile with its Gripen C and D fighters, and may also integrate it with some of its Hawk lead-in fighter trainers. The Brazilian Air Force intends to use the missile to arm its F-5Ms and possibly its future fighter.

possible brazil-pak connection in the future....
 
Wat about our bombs ? i know totally of topic just wonder since we are talking about the missles ? wat kind bombs wet have now and watwe will be getting in the near future?
 
well i heard somewhere that R-DARTER BVR is being developed jointly by PAKISTAN AND SOUTH AFRICA....can somebody either support this with a link or rejct my claim...? thank you
 
R darter i also heared about it please some one confirm about it
 
well i heard somewhere that R-DARTER BVR is being developed jointly by PAKISTAN AND SOUTH AFRICA....can somebody either support this with a link or rejct my claim...? thank you
Nope Pakistan was Intrested and is intrested in R-Darter , AMRAAM and MICA But global politics are Against it.

the Best part about R-darter is that It dosent uses Active Guidance , Meaning by its a Passive Heat seeker that too From a BV Range, its a true Silent killer.
 
BVR is a threat no doubt : but i think its a threat a bit OVER RATED

I feel that Shorter ranged High G , IR Missiles are a bigger threat, As far as i know BVRs are still not crossing the line of 25% shot accuracy, may be the figures have changed by now.

Having a ALLAMO , Mica, 530D, ADDER may be a threat and will keep the enemy at a distance , but that wont be too long , before he sneaks up on the BVR...

A much bigger and hard hitting threat will be the Short ranged IR missiles : like the Archer (AA-11) and AIM-9X. It has got off bore kills and High Gs , Its perfect cuz it gives u no time to think thus disrupting ur already stressed OODA loop.

The longer a missile has to travel the more chances are it gonna miss, plus BVRs (semi active) need guidance from ur AI, In such a case u cant turn back. Any threat emerging from other directions will either make u loose ur missile in the mid way cuz you will have to take evasive action. OR if u think u can manage both then he will escort u to the ground with ur burning AC.

Semi-Active BVRs are more of a Deterrence then a real threat, The Biggest Problem with them is that u got to meet the F-pole (it is the distance between u and ur target when the missile hits it). Meeting the right F-pole can only be done if u are able to launch ur missile at a max range. Other wise u can end up in your target's debries. A high G-turn, slanting down ward will most likely break his lock, cuz u will trigger his Doppler notch ( It is the pre defined doppler shift which the AI consider as A stationary target, the lower the notch the better the AI , but then the more ground clutter it will pick)

The time taken from launch to Impact of a BVR (ACTIVE) is alot as the distance is alot, most BVRs fail to Shot there targets because either the target out wits (60%) it or some bug takes in the whole Sequence (40%).

There for i feel, Its an over rated threat and BVR has still alot of Ground to cover before it can catch up wit the IR misslies
 
Last edited:
MBDA | Mar 9, 2009

In a world first for an Air Force and an infra-red guided missile, Air Combat Group (ACG) of the Royal Australian Air Force has successfully carried out the first in-service 'Lock After Launch' firing of an ASRAAM (Advanced short-range air-to-air missile) at a target located behind the wing-line of the ‘shooter’ aircraft.

The firing was conducted from an F/A-18 fighter aircraft, at low level and typical fighter speed, at a target located behind the fighter at a range in excess of 5km. The result was a direct hit on the target.

The engagement simulated a "chase down" situation by an enemy fighter and successfully demonstrated the potential for an all-round self protection capability with the ASRAAM. This capability is inherent on all platforms that provide pre-launch 'over the shoulder' designation information such as F/A-18, Eurofighter Typhoon and F-35 JSF.

Commenting on the firing, a representative from Air Combat Group said “this demonstration of ASRAAM capability is a major step forward for the RAAF and greatly increases the lethality of ACG’s F/A-18 fleet. It is a credit to the RAAF-MBDA-DSTO team who worked together to deliver this capability edge to the fleet.”

ASRAAM entered service with the RAAF in July 2004. To provide unique levels of in-service support, facilities for deeper maintenance and software support were established in Adelaide injecting some AUS$20 million into the South Australian economy over a period of 6 years. The software support facility, located at the Defence Science & Technology Organisation at Edinburgh (SA), allows Australia to modify the ASRAAM software in response to the Australian Defence Force's specific requirements. The deeper maintenance facility established at BAE Systems at Edinburgh Park provides the in-country capability to support the front line equipment.

Having entered service with the Royal Air Force in 2002, and deployed on Tornado, Typhoon, and shortly F-35 JSF, the ASRAAM programme has provided a unique opportunity for information exchange between the respective air forces, government departments and scientific organisations.

MBDA will be exhibiting a range of advanced air and naval weapon systems at Avalon 2009 and welcomes visits at Stand 2H9, Hall B to discuss the warfighting capabilities they provide.

With industrial facilities in four European countries and within the USA, MBDA has an annual turnover of more than EUR 3 billion and an order book of more than EUR 13 billion. With more than 90 armed forces customers in the world, MBDA is a world leader in missiles and missile systems. MBDA is the only group capable of designing and producing missiles and missile systems that correspond to the full range of current and future operational needs of the three armed forces (land, sea and air). In total, the group offers a range of 45 missile systems and countermeasures products already in operational service and more than 15 others currently in development.
 
China’s Emerging 5th Generation Air-to-Air Missiles

Internet source imagery from January 4 has offered the first glimpses of what may be China’s emerging 5th generation air-to-air missiles (AAM). One missile, called the PL-ASR or PL-10, shows a very close resemblance to the South African Denel A-Darter AAM. A second image, discovered on a China’s Northwestern University web site in mid-December, shows another missile similar to the radar-guided South African Denel R-Darter, designed in cooperation with Israel. Both of these missiles are likely designed for use with modern Helmet-Mounted Displays (HMD), which enable pilots to “look to kill” their targets. But there is more: additional imagery suggests that a previously reported ramjet powered development of the Chinese Luoyang PL-12 active-radar guided AAM, called the PL-13, could give the People’s Liberation Army (PLA) an AAM that could out-range existing U.S. AAMs

Data along with one image suggests the PL-10 could enter production in 2010 but it is not known when the other two new AAMs would enter production. When they do enter service, these AAMs could give both old and new PLA Air Force fighters a decisive advantage over Taiwan Air Force fighters armed with shorter range U.S. AIM-9 Sidewinder and AIM-120 AMRAAM missiles. The PL-ASR/PL-10 could have up to double the range of the new U.S. AIM-9X, the first U.S. HMD sighted AAM, which is just now entering service with U.S. Air Force and Navy squadrons. The ramjet powered “PL-13” may out-range current variants of the AIM-120.

Absolute determination of AAM capabilities is greatly hampered by the efforts of governments and manufacturers to deny information, such as that regarding missile range and countermeasures, which would allow potential adversaries to gain an advantage.[2] Furthermore, the utility of an AAM is also determined by many attributes of the carrying aircraft: its radar and electronic support systems, the availability of off-board sensor data, and the degree of training and experience of the launching pilot. But there is little margin for error when considering a major factor such as weapons, especially when considering that China’s increasing numbers of competitive 4th generation combat aircraft may be followed by 5th generation combat aircraft early to mid-next decade. Absent a U.S. response, such as the purchase of more 5th generation fighters, the development of a new generation of AAMs, or even the purchase of more capable European AAMs, the air power balance in Asia could shift dangerously toward China.


5th Generation Short Range Air to Air

Since the 1940s the progress of combat aircraft and their weapons have been measured in “generations.” The latest 5th Generation combat aircraft, of which the U.S. Lockheed-Martin F-22A Raptor is the only one operational, are defined usually by their ability to combine the attributes of stealth, advanced electronically scanned (AESA) radar, and engines powerful enough to cruise supersonically without recourse to fuel-guzzling afterburners (super-cruise). These capabilities give the F-22A the ability to detect and attack before being detected, and to evade new and deadly Russian surface-to-air missiles. But since their introduction in the 1970s, American, Russian and other manufacturers have been constantly upgrading their 4th generation fighters such as the Boeing F-15 Eagle and the Sukhoi Su-27/30 Flanker with ever more modern electronic systems and weapons.

In the 1980s Russia began the trend toward the 4th generation AAMs with the introduction of the Vympel R-73, the first thrust-vectored AAM with a 45-degree off-bore-sight view (90-degree field of view) infrared seeker, and the ability to be targeted with a helmet-mounted sight (HMS). This gave Soviet-Russian fighters a decisive advantage over U.S. and European fighters: the Soviets could always launch their short-range AAMs first as they did not have to orient or “dogfight” their fighter, but merely needed to “look” at the target to direct the R-73 AAM. This technology has evolved into a 5th generation defined by the inclusion of more sensitive imaging-infrared seekers that home in on a specific part of the target aircraft; seekers with wider 90-degree off-bore-sight view(180-degree fields of view); seekers that incorporate advanced anti-jamming and anti-decoy technology; and those which use more advanced helmet-mounted displays. Examples of 5th generation infrared guided AAMs include the British ASRAAM, German IRIS-T, Israeli Python-5, Japanese AAM-5, U.S. AIM-9X, the improved Vympel R-73 and the South African A-Darter. Should a longer range 5th generation AAM like the Python-5 miss its target on the first pass, it usually has the range and agility to attack once more.

While first generation short range infrared guided AAM relied on the pilot to find and maneuver to attack an often rapidly moving target, 4th and 5th generation short-range AAMs rely on aircraft sensors and advanced helmet mounted displays to target these latest AAMs which usually have much greater range than a pilot’s sight. In the 1980s, in addition to using the aircraft’s radar, the Soviets introduced more sophisticated optical infrared search and tracking (IRST) systems, which allowed aircraft to turn off emitting radars which in turn could be targeted by opposing electronic sensors and jamming. The Russian OLS-30 IRST used in late versions of Sukhoi fighters, and Shenyang co-produced Su-27/J-11 fighters, is reportedly able to passively search and track targets out to 50-90km. While Russian IRSTs are reportedly not able to determine range, the Russians apparently network several fighter IRSTs and radar to find the range of targets, even stealthy targets.[3] HMDs are able to collate data from radar, optical sensors, plus aircraft performance data onto the pilot’s helmet visor, allowing him to target distant threats without having to concentrate on cockpit instruments. Israel’s DASH HMD became the basis for the U.S. Joint Helmet Mounted Cueing System (JHMCS) HMD, which support the AIM-9X AAM that in 2003 started entering service on U.S. F-15, F-16 and F/A-18 fighters.



Active Radar-Guided AAMs

While the U.S. has lagged in the development of 5th generation HMD sighted AAMs, it has helped to lead the field in the development of medium range active-guided AAMs. The Raytheon AIM-120 Advanced Medium Range Air-to-Air Missile (AMRAAM) began in 1975 leading to fielding in the early 1990s, while the Vympel R-77 program began in 1982 and first appeared in the early 1990s. Both missiles sought to perfect the advancement of incorporating an active radar seeker to allow the AAM to guide itself autonomously for part of its flight. Previous “semi-active” radar guided AAMs like the AIM-7 Sparrow and the Vympel R-27 required continuous “painting” by aircraft radar with constant radio signals to guide the missile until reaching its target. Active radar guided missiles like the AIM-120 and R-77 still require target location data from the launching aircraft, or more recently, from an off-board sensor like an AWACS aircraft, but after the missile’s active radar acquires the target the launching aircraft has the option to maneuver to safety or commence another attack.

The AIM-120, the Russian R-77 and the French MICA dominate the market for active-guided AAMs. In this decade Japan, China and Taiwan have fielded active guided AAMs, with the latter two relying on imported technology. All active-guided AAM makers have sought to improve their products with better seekers, some using satellite navigation guidance, enhanced electronic counter measures, the addition of data links to provide updated target location data, and better engines to enable longer range. The U.S., Russia, Europe, South Africa, and perhaps more recently China, have developed ramjet engine powered AAMs to achieve longer ranges without increasing missile size. Ramjets also allow the missile to sustain its high speed over most of its range, which significantly expands the “no escape zone” or area within which a target will likely be killed. The only ramjet powered AAM soon to enter service is the MBDA Meteor, which advertises a 100+km range, and a constant Mach 4+ speed and a “no escape zone” three times that of early AIM-120 AAMs.[4] More recently Russia has revived its very long range missile program with the Novator K-100 or K-172, which has been variously reported to have a 200km to 400km range. The last U.S. very long range Hughes AIM-54C Phoenix, capable of reaching 150km, was retired from U.S. Navy service in 2004. While the U.S. had two-stage and ramjet missile engine AAM test programs in the 1980s and 1990s,[5] it has chosen not to replace the long range AIM-54C.



China’s Record of Foreign AAM Technology Reliance

Almost from the beginning the PLA has relied on foreign technology, whether from the United States, Russia, Israel and now South Africa, to develop ever more modern air-to-air missiles. In September 1958 a U.S. AIM-9B Sidewinder short range air-to-air missile (AAM) was captured by China after it was fired by a Taiwanese F-86 Sabre fighter at a Chinese MiG-17, becoming lodged in the airframe without exploding. At the time the AIM-9B was the most modern air-to-air missile anywhere and it was soon copied by the Soviet Union and China. For the Soviets it became the K-13 (NATO: AA-2 Atol) and for China the PL-2 (PL meaning Thunderbolt). During the Vietnam War China was able to obtain unexploded copies of more advanced AIM-9 missiles, which influenced the PL-5, as well as early version of the Raytheon AIM-7 Sparrow, which influence the radar-guided PL-11. During the 1980s China obtained the French Matra 550, which was copied as the PL-7 and the Israeli Python-3, which was copied as the PL-8.

From the 1990s to the present period the PLA has purchased thousands of modern Russian AAMs, including the Vympel R-73 short-range AAM, and multiple variants of the semi-active radar and infrared guided Vympel R-27 medium range AAM. In addition the PLA has purchased about 1,000 of the more modern active radar guided Vympel R-77 medium range AAM. These missiles almost exclusively arm Sukhoi/KnAAPO made Su-27SK/Su-30MKK/MKK2 fighters or the Shenyang Aircraft Co. co-produced version of the Su-27SK called the J-11, or J-11A. It has been reported that some number of early purchase Su-27SKs and early J-11s were upgraded in order to be able to fire the R-77, whereas the Su-30s had this capability from delivery.

Starting in the 1990s, as it did with other weapons purchases, the PLA decided to purchase the underlying technology of weapons systems or their components, so as to make weapon systems with increasing indigenous Chinese content. By the mid 1990s China’s main missile maker Luoyang had developed the PL-9, which took the fuselage of the Python-3, attached different guidance fins, and incorporated a copy of the Ukrainian Arsenel helmet sight, called the TK-14 in Chinese service, to make a new AAM.[6] The latest PL-9C features an increase in range to 22km, up from 15km for the PL-9, PL-8 and Python-3 AAMs. One mystery has been why the PL-9 has not seen widespread usage in the PLA air forces. From the 1996 Zhuhai show and at subsequent shows, Luoyang officials have noted to the author that the PLA was not interested in buying the PL-9, even though it has occasionally been seen on some fighters like the late model Chengdu J-7G.

Perhaps a key reason for not purchasing the PL-9 has been the expectation that the PLA would be building an even better AAM. At the 2002 Zhuhai Airshow Luoyang officials told this analyst and other reporters that the company was working on an advanced AAM. The few details disclosed, such as advanced guidance, the use of thrust vectoring and helmet displays created a basis for speculation that Luoyang was interested in an AAM like the British ASRAAM. Despite the heavy reliance on purchased Russian short range AAMs like the R-73, the inspiration for Luoyang’s 5th generation AAM was to come from elsewhere.




Possible “South African” AAMs

At the 2002 Zhuhai Airshow South African firms set up a small booth and spoke of their desire to do business with the PLA but did not go into specifics. At subsequent shows the South African presence grew larger and it is now clear that there have been several cooperative programs, including unmanned aircraft, air defense systems and air to air missiles. While South African firms have said little about the latter, in 2004 Yihong Chang reported on PLA interest in purchasing the 5th generation Denel A-Darter AAM.[7] The data revealed on January 4 indicated that development of the PL-10 started in 2004, which might track very well with the reported deepening of South African-PLA cooperation. The few clear images of the PL-ASR/PL-10 show a near 95 percent similarity with the Denel A-Darter AAM. The main differences are in the rear fin shape and configuration, but it is a relatively minor difference. So it is possible to speculate that the PL-10 may very well have a performance similar to or better than the A-Darter, which would include use of advanced imaging infrared guidance and a maximum range of 20km or better. The January 4 revelation indicates the seeker has a 90-degree off-bore-sight capability (180 degree field of view). It also has a lock-on-after-launch capability, meaning it can be launched from a high off-bore-sight position and acquires the target, usually accomplished with the aid of a helmet sight or IRST.

This missile could arm most PLA fighters equipped with an IRST, even a short range radar but also with computers capable of processing for the helmet mounted display. This would likely initially include J-10 and J-11B fighters, but then older J-11As, and then late model J-8II and J-7 fighters.



New Type AAM

The revelation of PL-10 imagery with the clear implication of South African technical participation also provides possible insights into another AAM found on a Chinese university website in mid-December 2007. This AAM has not yet been identified by any official or unofficial PLA source, but this single picture shows some similarity to the Denel radar-guided R-Darter, which is virtually the same missile as the Israeli Aircraft Industries Derby. The product of Israeli and South African cooperation during the 1980s and 1990s, the R-Darter has a light weight of 120kg and reported range of 63km.[8] It appears that the R-Darter/Derby program intended to produce a very maneuverable but light-weight radar-guided AAM that could be back-fitted to advanced 3rd and 4th generation fighters. R-Darter entered service with the South African Air Force but Derby has not yet entered service with the Israeli Air Force, though it is reportedly being used by the Singapore Air Force.


The key similarity between the new PLA AAM and the R-Darter appears to be their shape and the possible inclusion of a small roll stabilization fins behind the front fins. However, it also appears that this new missile is appreciably smaller than the R-Darter, perhaps weighing only about 100 to 110kgs.[9] This would mean a shorter range, perhaps 20 to 30km. It is not known whether this new AAM has a semi-active, active, or even a passive seeker. One possibility may be a version of the new small 150mm seeker being marketed by Russia’s AGAT.[10] It is clear that the PLA intends to exploit this missile’s light weight, as its first public illustration shows two of the new missiles paired with a PL-12 on a single three-missile launch pylon. This pylon configuration allows newer fighters such as the FC-1, J-10, J-11B and JH-7A to increase their beyond-visual-range AAM carriage capability. This missile could also be intended to quickly upgrade the latest models of 3rd generation fighters like the Shenyang J-8IIF/H and the Chengdu J-7E/G with a lightweight radar guided AAM to complement the PL-10 infrared/imaging AAM.

If these two new PLA AAMs were aided substantially by South Africa, then it would stand to reason that South Africa may have also provided key enabling technologies such as Helmet Mounted Display systems and data links. Denel’s Archer HMD was developed to support the A-Darter and R-Darter and would likely have been sold to China along with the AAM technology. China’s Luoyang group has also long commented, albeit cryptically, on its interest in developing HMD technology, with images of experimental HMDs appearing from time to time. A new Luoyang HMD may benefit from indigenous and foreign technology. A helmet mounted sight displayed by the Cigong Group at the 2004 Zhuhai show uses prominent light-emitting diodes to allow cockpit computers to track the position of the pilot’s head, in order to target weapons, the same system used by the Denel Archer HMD.


PL-12

Indicating a major advance in its AAM technology, in 2001 Chinese sources began revealing the first data on the Leihua Electronic Technology Research Institute (LETRI) SD-10, later PL-12 active radar guided AAM. It is likely that at about the same time that the PLA was negotiating to purchase the R-77, it was also pressing Russia’s missile concerns for technology to support an indigenous Chinese program. Russia’s missile radar maker AGAT reportedly sold China drawings of the 9B-1103M radar for the active-guided version of the R-27 AAM. But China presumably also gained insights from the AGAT 9B-1348 radar on the R-77.[11] The PL-12 also reportedly has a “passive” seeking mode that would allow it to home in on an emitting target, such as a jamming or AWACs radar aircraft.[12] However, the SD-10 uses a Chinese-made missile motor, which when combined with a “lofted” flight profile, can achieve a maximum range of 70km, about 10km less than the R-77. Nevertheless, in the PL-12 the PLA has a modern self-guided AAM that is in the same class as the U.S. AIM-120 and the Russian R-77. In 2002 China revealed basic data about the SD-10 and began to display models of the missile at air-shows, such as Zhuhai in November 2002. By 2005 to 2006 the PL-12 began to appear in photos of PLA fighters, especially the Chengdu J-10 and some versions of the Shenyang J-8II. It has also been tested on the Shenyang J-11B, now in advanced development, and has been seen in at least on photo on a wing pylon of a Xian JH-7A fighter attack fighter.


“PL-13”

Another surprise in the imagery made available on Chinese web pages on January 4 was a curious computer-generated depiction of a missile called the “PL-13.” However, it must be stressed that this is the first image of this missile and a definitive determination of its existence and performance must await further disclosures. Arguing in favor of this program’s existence is the fact that its image appears with clear images of the PL-12 and the new PL-10, which would tend to lend credibility to the new missile depiction. In addition, Luoyang was reported to have been interested in ramjet propulsion to develop the PL-12.[13] This PL-13 image also points to the possibility that Vympel has sold China the technology needed to make such an AAM. The PL-13 image appears to show a two-intake ramjet motor, a configuration that Vympel had come to prefer as it was developing its R-77M-PD, following early 1990s collaboration with France’s former MATRA Corporation.[14] The ramjet intake shape on the PL-13 appears to conform to one known Vympel configuration. Furthermore, the four cruciform fins at the front end of the PL-13 are also characteristic of other Vympel missiles like the R-27, and Vympel was also reportedly discarding the “grid” shape fins for conventional fins,[15] which also coincides with the PL-13 image. Inasmuch as Russia apparently decided not to purchase the R-77M-PD, it is possible that Vympel was allowed to sell this missile technology to China.[16] But it is also possible that South Africa was a source for some AAM ramjet engine technology, inasmuch as South Africa also had an unrealized program called the Long Range Air-to-Air Missile (LRAAM).

If a real program, then the PL-13 would give the PLA a long-range AAM with considerable new capabilities. The R-77M-PD was reported to have an estimated range of 160km and the PL-13 should be expected to do as well or better. Furthermore, as it a ramjet powered missile, it is expected to sustain its high speed, likely about Mach 4 and greater, throughout its engagement, meaning that it has a substantial “no escape” zone, perhaps similar to that of the MBDA Meteor. Should the PL-13 see a near-term introduction, the it will likely be used in conjunction with the PLA’s AWACS aircraft that can find distant targets and then pass targeting data to attacking aircraft, likely J-11B and J-10 fighter. But the potential range of the PL-13 offers an indication that the PLA is also likely developing long-range radar for its 4th and 5th generation fighters, or may be interested in upgrading existing fighters with new longer range Russian radar. Inasmuch as Vympel has been marketing passive guided versions of the R-27 and R-77, it is reasonable to speculate that a version of the PL-13 may feature a passive guidance system, to better enable long-range attacks against critical support aircraft like AWACS, electronic warfare and tanker aircraft. The PL-13 could also form the basis for a future light-weight anti-radar or supersonic anti-ship missile.



There is also the possibility that the PLA could purchase new Russian very long-range AAMs or develop similar AAMs themselves. Inasmuch as the PLA is reportedly interested in purchasing some number of the new Russian Sukhoi Su-35 fighter, it may also purchase the unique weapons offered with this fighter, like the 300-400km range Novator K-100/172. India may be interested in an advanced version of this missile capable of anti-missile intercepts.[17] Asian military sources also note that China is developing a 400km range surface-to-air missile.[18] If this new PLA SAM is based on Russian S-400 components, for which China is reportedly an investor, then this new SAM may be small enough to be developed into a very long-range AAM, perhaps even with future anti-missile intercept capabilities.



complete article
International Assessment and Strategy Center > Research > China’s Emerging 5th Generation Air-to-Air Missiles
 
Last edited:

Back
Top Bottom