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Abstract— This study aims at describing a methodology for the 

Static Structural Analysis of Fighter Aircraft’s wing spars for 

identification of critical stresses. Aircraft’s wing is subjected to 

various flight loads i.e. bending loads, twisting loads, shear stress 

etc. This analysis helps to determine structural and material 

safety limit of aircraft’s wing. Also, the location of critical 

stresses, that arises due to different loading actions on both wing 

and wing spars, can be determine. The failure of aircraft wing 

while performing different maneuvers like pulling g’s can cause 

catastrophic results. Therefore, for safety concerns, different 

analysis was done on aircraft’s wing. So, in this paper, bending 

stress, shear stress and von mises stress was calculated 

analytically and numerically for different loading conditions and 

then critical stresses were formulated and identified for failure or 

yielding points of wing spars. For ANSYS Simulation, CAD 

Models of wing and wing spars were imported in ANSYS 

workbench and static structural analysis was done to obtain 

critical stresses. Von Mises yield theory was used to formulate 

and identify critical stresses and yielding stresses. Numerical 

stress simulation was done in ANSYS and results for Von Mises 

Stress were obtained for different loading conditions. The results 

obtained from using both analytical calculation and numerical 

simulation were analyzed. Some of the ANSYS simulated results 

were exceeding beyond yield limit at some loading conditions and 

these exceeding results for both wing and spars were marked as 

critical stresses. The locations of these critical stresses were at 

attachment or fixed point of wing spars.   

Keywords—-Static Structural Analysis, Wing Spars, Critical 
Stresses, Von Mises’s Stress, Factor of Safety 

I. INTRODUCTION 

Wing and fuselage are the two major components of aircraft. 
Wing has primary ability to carry the bending loads. Wings are 
attached at right angle to the fuselage and are fixed from one 
side so they act like a cantilever beam. Wing is subjected to 
different types to loads mainly containing loads due to lift, 
fuel, engine, landing gear, inertial, structural, and other 
aerodynamic effect. Spars are the main structural members 
with ability to bear these loads. Spars are beams or structural 
members which are running along the wing and they carry 
different forces and moments due to distribution of lift along 
the span of wing. 

Fig. 70: Aircraft Wing [1] 

Since Aircraft wing is subjected to various repeated loading 
during flying so it must have high value of strength to weight 
ratio to withstand these loads. Static structural analysis is used 
to calculate values of deformations and stresses acting on wing 
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due to these repeated loads. These loads are acting at different 
g’s values and wing must be constructed strong enough to 
counter these loads. Wing must be made using high strength 
materials. 

LITERATURE REVIEW 

1. Aircraft Wing  

To fly an aircraft, the aircraft must be able to lift the load or 
weight of itself, fuel, pilot, passengers and cargo. The 
maximum amount of lift is generated by wings to help the 
aircraft fly. The engines provide the required thrust to help the 
aircraft fly through the air. Small wings are present at 
horizontal and vertical tails to help in control and provide 
maneuverability to the aircraft. The tail usually contains a 
horizontal stabilizer (fixed horizontal part) and a vertical 
stabilizer (fixed vertical part). These stabilizers help to provide 
stability and control the maneuverability of aircraft. 

The spars are the most supportive part of wing running along 
the wing in spanwise direction at right angle to fuselage. The 
wings weight and loads acting during flying are carried by 
spars so they must be made of strong material to hold the 
twisting and bending loads or else it will cause failure of wing 
and eventually catastrophic results. Ribs are also attached with 
spars to help in carry almost all types of loads along with spars 
like bending, torsion, tensile and compression. While the 
aircraft is on the ground spars and ribs help in carrying wings 
weight. Main spar carries major amount of total load acting on 
the wing. Usually a fighter aircraft has 3 spars. 

 
Fig. 71: Basic Structure of aircraft wing [2] 

 

    2.    Wing Spars 

A wing has spars and ribs to carry different loads acting on the 
wing. Spars are running spanwise while ribs are located 
chordwise in the wing. The spars can be considered as 
cantilever beam. Due to different loads acting on the wing, 
shear stress and pressure is generated on wing along the chord 
and spars and ribs carries these reactions and hold the wing 
strong to bear them.Ribs help in keeping the airfoil shape of 
the wing as they are present along the chord of wing and also 

help in resisting the torsion and twisting effect of the wing. 
Stringers are present in the wing to help in carrying surface 
loads of wing to spars and ribs and they also help in resisting 
the bending of wing due to various application of loads on the 
wing. Spars can be made of different materials like wood, 
composites and metals. It depends on specific design criteria 
of aircraft. According to cross-sectional configuration spars 
can be classified into four different types as I beam, box 
shaped, solid and partly hollow [3].  

 

 
Fig.72: Configurations of Spar Beam  [4] 

For analysis, I-beam spar configuration is used for analytical 
calculation of main spar. 

 
       3.    I-Beam Spars 
Caps are the top and bottom part of the I–beam and web is the 
center vertical section. One metal can be used to make the 
entire spar but it is often made up more than one angle or 
extrusions. The main principal depth is formed by web and 
caps are attached to the web. Together, caps and webs carry he 
bending loads of wing and wing skin is attached to the caps 
portion [4].  

 
Fig.73: I-Beam Spar [4] 

 

      4.    Spar loads 
Spars are the most important part of wing as they are 
responsible to support maximum load acting on the wing. 
While the combination of spars and ribs provide rigidity and 
strength to wing which makes aircraft fly safely. In Biplanes 
flying wires are employed to transmit loads during flight 
through the wires which enables small and light weighted 
spars to be used [3]. 

 
     5.    Forces acting on spar 
Following are the forces acting on wing spars [3] 
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bending loads acting upward and downward due to 
lift force and wings weight respectively. 
Drag loads that are induced due to airspeed and due 
to effect of inertia. 
Inertial loads due to rolling. 
Twisting loads that are acting chordwise while flying 
at high airspeed and these loads are due to 
aerodynamic effects. 

 
 

6.     ANSYS  

Ansys is an analyzing software and is used to simulate 
computer build models of structures, machine components or 
electronics to obtain strength, fluid flow, elasticity, toughness 
and other attributes. It can determine different functions of 
computer build model under different conditions without 
making actual test model. These models are meshed into 
smaller parts to carryout different operations. CAD model is 
imported into Ansys and then different conditions are applied 
like pressure, force, moment, temperature or other physical 
properties and then Ansys will simulate under applied 
conditions to determine required results like deformations, 
fatigue, factor of safety, Stresses, strains, fluid flow etc. [10]. 

 
7.    LoadFactor
During flying, a stress is produced on aircraft due to applied 
force that deflects the aircraft from straight line flight, this 
force is called as load factor. Load factor is defined as ratio of 
aerodynamic force to total weight of aircraft. For example, 
load factor of 4 means that amount of load acting on aircraft is 
4 times its weight [5].  
 

(1)

 
When an aircraft is design, it is necessary to determine 
maximum load factor which can be expected in different 
operational conditions. These maximum load factors are 
called limit load factors. For safety concerns, an aircraft 
should be designed in a way to withstand various highest load 
factors without having any structural damage. During level 
flight, wings provide support to weight of the aircraft and also 
to centrifugal force experienced by aircraft. As an aircraft 
takes steep bank, load factor increases due to increase in 
horizontal component of lift and centrifugal force. But if the 
value of load factor increases so much that increase in angle of 
attack don’t provide enough amount of lift to support the load, 
the wing stalls. Since stall speed increases directly with square 
root of load factor, pilot have to be aware of different flight 
conditions due to which load factor can increase to a critical 
value. If we increase g’s value, weight of aircraft and load 
acting on wing will also increase by respective increase in g’s 
values. During flying an aircraft interacts with air and in 
result, drag force acts on the aircraft[5].  

 
                       (2) 

 
                          (3) 

The below fig. shows the schematic diagram [52] of high g 
maneuvers performed by aircraft while it is performing pitch 
and turning maneuvers. 

 

 

8.     Von Mises’s Theory
There are many theories to discuss the failure of material, Von 
Mises theory is used to predict the yielding of material. This 
theory states that a material (ductile) will yield/fail when the 
distortion energy per volume reaches a critical value. The 
critical value of the distortional energy can be used to estimate 
[8]. State of stresses at yielding point is given by:  
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1= Y (yield stress)  
 

2= 3 = 0  
 

At yielding distortion energy per volume is: 
 

 =    (4) 

=  =   (5) 
 

                                          (6) 
 

Where, 
Y= Yield Stress 

 = Distortion Energy per Volume 
 = Poisson Ratio 

E = Elastic Modulus 
 = Von Mises’s Stress 

 = Yield Strength 
 
Thus, the theory of distortion energy states that in uniaxial 
tensile test material yields as the value of von Mises stress 
becomes greater than the yielding stress [8]. 
 

 
Fig. 74: Failure Envelope of Distortion Energy Theory to find yielding of 

material in tensile test [9] 

 

Maximum Distortion Energy Theory (Von Mises Yield 
Criterion): 

Von Mises Stress for 3-D case 

 

 =  

 

 

Von Mises Stress for 2-D case 

 =  

 

Yield Stress, , occurs when 

   

 

 

9.    Factor of Safety 
The ratio of the yield strength of a material to the maximum 
equivalent or von mises’s stress is defined as factor of 
safety. In aerospace industry, 1.5 is the minimum factor of 
safety [8]. The origin of 1.5 factor of safety for aircraft both 
military and commercial was first established in 1934 and 
has been in use since that time.  
Factor of Safety = 
 
       10.   Lift Distribution on Wing 

A. Elliptical Lift distribution 

To determine the loads acting on the wing, we must know 
about the lift distributed along the span of wing. There is 
elliptical distribution of lift in most aerodynamically efficient 
wing along the wingspan, with maximum value of lift at center 
and zero lift value at tip of wing. Most practical wing 
geometries have a spanwise lift distribution approaching 
elliptical, but with relatively small variations in spanwise lift 
distribution due to wing planform. Wing twist, flap deployment 
and changes in airfoil section along the wing will affect the 
distribution of lift along the span, and these effects should be 
taken into account where appropriate. 

 
Fig.75: Elliptical Lift Distribution 

The upper equation is used to calculate elliptical pressure 
distribution. Then, the calculated pressure distribution is 
applied on lower side of wing and spar models in ANSYS 
using tabular data. It is done in Boundary condition section of 
Finite Element Analysis chapter. 

For Analytical calculations and CATIA models simulations of 
spars in ANSYS, uniform pressure distribution is used.  

 

B. Schrenk Approximation 
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This is a method to find solution for span-wise lift distribution. 
Schrenk method is the mean of planform lift and elliptical lift 
distributions.  

 

Elliptical =  

Planform =  

Schrenk =  

 
Where, 
 

: total lift force (N)  
: lift distribution (N/m)  
: taper ratio  
: wing span (m)  
: spanwise distance of section (m) 

II. METHODOLOGY AND RESULTS 

For Static Structural Analysis of Fighter Aircraft’s Wing 
Spars, we will be adopting the following methodology. 
 

1. CAD model of Wing 

We get the already available CAD model of the aircraft. 
Model mainly contain these major elements of wing internal 
structure that are as below. 

Spars 
Skin 
Ribs 
Wing attachment points tofuselage 

2. Assigned Materials to different Sections of wing 

As a whole wing is major part of the aircraft but it has the 
different types of 
geometrieshavingdifferenttypeofmaterialsproperties.Dependin
gupontheposition of the part of wing the different mechanical 
properties were given as the standard aircraft pattern. For 
example, the all the spars of the wings take all the load that is 
acting on the wing so they are prefer to have a greater strength 
as compared to ribs and skin of thewing. 

 
Fig.1: Materials assigned to each sections and components of wing 

Each material along with its properties and areas where they 
are used in wing model in ANSYS are shown below, 

A. AL-7075-T6 / AISI-7050 
Table 1: Material properties of AL-7075-T6 / AISI-7050 [44] 

Properties Values

Ultimate Tensile Strength 572 MPa

Yield Strength 510 MPa

Poisson Ratio 0.33

Modulus of Elasticity 71.3 GPa

Front Spar 
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Fig.2: Materials assigned to section and component of wing 

B. AL-7050-T7451 
Table 2: Material properties of AL-7075-T7451 [44] 

Properties Values

Ultimate Tensile Strength 524 MPa

Yield Strength 460 MPa

Poisson Ratio 0.33 

Modulus of Elasticity 71.3 GPa

 

Fig.3: AL-7075-T7451 Material assigned to different sectionof the 
wing 

C. PH 13-8 / AISI S13800
Table 3: Material properties of PH 13-8 / AISI S13800 [44] 

Properties Values

Ultimate Tensile Strength 1480 MPa

Yield Strength 1410 MPa

Poisson Ratio 0.22 

Modulus of Elasticity 221 GPa
 

 

Fig.4: AISI S13800 Materials assigned to section and component of 
wing 

 

 

D. 2124-T851 / ASTM B209
Table 4: Material properties of 2124-T851 / ASTM B209[44]

Properties Values

Ultimate Tensile Strength 483 MPa

Yield Strength 441 MPa

Poisson Ratio 0.33

Modulus of Elasticity 73.1 GPa

Fig.5:2124-T851 / ASTM B209 Materials assigned to section and 
component of wing 

E. 30CrMnSiA / AISI 1024 Steel

Table 5: Material properties of 30CrMnSiA / AISI 1024 Steel [45]
Properties Values

Ultimate Tensile Strength 1080 MPa

Yield Strength 835 MPa

Poisson Ratio 0.3 

Modulus of Elasticity 207 GPa
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Fig. 10: 3-D CATIA Model of I Beam 

This model of I beam is imported into ANSYS and static 
structural analysis is done to obtain Von Mises’s Stress and 
Factor of Safety under different loading conditions with 
different g’s values. 
Steel and titanium are used as materials for I beam structure. 
Meshing is done to obtain required results. Boundary 
conditions applied are similar to that used for wing model 
previously i.e. Fixed from one side and upward force and 
downward gravitational acceleration is applied on I beam. In 
figure below A point shows fixed end, B shows gravity acting 
downward and C shows load acting on lower side of wing in 
upward direction. Fig. 12 and 13 shows von mises stress and 
factor of safety at 1g. 

 
Fig. 11: Boundary Conditions applied at 1g condition 

 

 
Fig. 12: Von Mises’s Stress at 1g condition 

 
Fig. 13: Factor of Safety at 1g condition 

 
Table 14: ANSYS Results for Main Spar using Steel 

G’s Values Von Mises’s Stress (MPa) Factor of Safety 
-1 g 90.07 10.65 
-2 g 180.03 5.33 
-3 g 270.04 3.55 
-4 g  360.06 2.66 
1 g  96.03 9.99 
2 g 192.07 4.99 
3 g 288.1 3.33 
4 g 384.14 2.49 
5 g 480.17 1.99 
6 g  576.21 1.66 
 

Table 15: ANSYS Results for Main Spar using Titanium 
G’s Values Von Mises’s Stress (MPa) Factor of Safety 
-1 g 90.54 18.77 
-2 g 181.01 9.39
-3 g 271.52 6.26
-4 g  362.02 4.69 
1 g  94.05 18.07 
2 g 188.12 9.03 
3 g 282.17 6.02 
4 g 376.23 4.51
5 g 470.29 3.61
6 g  564.35 3.01 
7 g 658.4 2.58 
8 g 752.46 2.25 
Error in FOS for Steel =  = 8.29% 

Error in FOS for Titanium =  
 

B.    Rear Spar 

It is assumed rear spar is carrying 30% of total load acting on 
the wing. 

Table 16: Analytical Results of Rear spar 
G’s 
Values 

Force 
(MPa) 

Von Mises’s 
Stress 
(MPa) 

Factor of 
Safety 
(Steel) 

Factor of 
Safety 
(Titanium) 

-1 g 17437.72 894.233 1.95 1.90 
-2 g 34875.43 2178.55 0.80 0.78 
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-3 g 52313.15 3268.95 0.535 0.52 
1 g 17437.72 894 1.95 1.90 
2 g 34875.43 2179 0.80 0.8 
3 g 52313.15 3269 0.54 0.52 

 

Dimensions of C beam are, 
Depth = 0.13 m 
Width = 0.04 m 
Flange Thickness = 0.004 m 
Web Thickness = 0.004 m 
 
The CATIA Model of C-Beam is shown below 

 
Fig. 14: CATIA Model of C beam Showing all Dimensions 

 

 
Fig. 15: 3-D CATIA Model of C Beam 

 
Fig. 16: Von Mises’s Stress at 1g condition 

 

 
Fig. 17: Factor of Safety at 1g condition 

 
Table 17: ANSYS Results for Rear Spar using Steel 

G’s Values Von Mises’s Stress (MPa) Factor of Safety 
-1 g 900.91 1.94 
-2 g 1801.8 0.97 
-3 g 2702.7 0.65 
1 g  916.41 1.91 
2 g 1832.8 0.95 
3 g 2749.2 0.64 

Table 18: ANSYS Results for Rear Spar using Titanium 
G’s Values Von Mises’s Stress (MPa) Factor of Safety 

-1 g 898.02 1.89 
-2 g 1796 0.95 
-3 g 2694 0.63 
1 g  906.73 1.87 
2 g 1813.5 0.94 
3 g 2720.2 0.62 

Error in FOS for Steel =  = 18.75%

Error in FOS for Titanium =  
     C.     Front Spar 
It is assumed that front spar carries 30% of total load acting on 
the wing [59]. 

Table 19: Analytical Results of front spar 
G’s 
Values 

Force 
(MPa) 

Von Mises’s 
Stress 
(MPa) 

Factor of 
Safety 
(Steel) 

Factor of 
Safety 
(Titanium) 

-1 g 17437.72 50 10.03 34
-2 g 34875.43 100 5.02 17 
-3 g 52313.15 150 3.34 11.33 
1 g 17437.72 49.86 10.03 34.09 
2 g 34875.43 99.72 5.01 17.04 
3 g 52313.15 149.58 3.34 11.36 
4 g 69750.87 199.46 2.51 8.52
5 g 87188.58 249.32 2.0 6.82 
6 g 104626.30 299.18 1.67 5.68 
7 g 122064.01 330.05 1.51 5.15 

 
Dimensions of C beam are,
Depth = 0.185 m 
Width = 0.175 m 
Flange Thickness = 0.025 m 
Web Thickness = 0.025 m 
The CATIA Model of C-Beam is shown below 
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Fig. 18: CATIA Model of C beam Showing all Dimensions 

 

 
Fig. 19: 3-D CATIA Model of C Beam 

 

 
Fig. 20: Von Mises’s Stress at 1g condition 

 

 
Fig. 21: Factor of Safety at 1g condition 

 
Table 20: ANSYS Results for Front Spar using Steel 

G’s Values Von Mises’s Stress (MPa) Factor of Safety 
-1 g 36.96 13.53
-2 g 73.91 6.76 
-3 g 110.87 4.51 

-4 g  147.83 3.38 
1 g  54.54 9.17 
2 g 109.08 4.58 
3 g 163.62 3.05 
4 g 218.16 2.29 
5 g 272.7 1.83 
6 g  327.24 1.53 

Table 21: ANSYS Results for Front Spar using Titanium 
G’s Values Von Mises’s Stress (MPa) Factor of Safety 

-1 g 40.03 42.47 
-2 g 80.06 21.23 
-3 g 120.08 14.16 
-4 g  160.11 10.62 
1 g  49.76 34.16 
2 g 99.51 17.08 
3 g 149.27 11.39 
4 g 199.02 8.54 
5 g 248.78 6.83 
6 g  298.53 5.69 
7 g 348.29 4.88 

Error in FOS for Steel =  = 8.38% 
 

Error in FOS for Titanium =  

Comparison of Results 
Table 22: Comparison of Results 

Aircraft 
Member 

Analytical Computational % Error 
(Structural 

Steel) 

Main Spar 1.29 1.66 22.3 %
Front Spar 1.25 1.53 18.3 %
Rear Spar 0.535 0.64 16.4 %

 

Aircraft 
Member 

Analytical Computational % Error 
(Titanium) 

Main Spar 2.99 2.25 24.7 %
Front Spar 5.15 4.88 5.2 %
Rear Spar 0.52 0.62 16 %

Discussion 

The results obtained shows acceptable error percentage. The 
large error in results is due to reasons that certain 
approximations were made in analytical calculations i.e. 
concentrated load was used in cantilever beams while in 
ANSYS simulation uniformly distributed load was used. 

5. Spar Models 
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Fig. 22: Front Spar 
 

 
Fig. 23: Main Spar 

 
Fig. 24: Rear Spar 

    6.    Materials 

Materials Used in Spars are, 
1) Structural Steel 

2) Ti-6Al-2Zr-2Sn-2Mo-2Cr-0.25Si 

3) Steel ph 13-8 

   7.  Meshing 

The meshing of spars is done using fine meshing technique and 
1mm mesh size is used.  

 

 
Fig. 25: Meshing of Front Spar 

 
Fig. 26: Meshing of Rear Spar 

 
Fig. 27: Meshing of Main Spar 

 

 

8.    Boundary Conditions  

Following boundary conditions are used in wing spars in 
ANSYS 

Spars are fixed from attachment points 
Uniform and elliptical pressure is applied to lower 
surface of wing in upward direction i.e. while pulling 
g’s, lift force is increased and it is directed upward to 
support the aircraft in pulling those g’s. 
Standard Gravitational acceleration is applied in 
downward direction. 

 

Standard gravitational acceleration is applied downward so 
when an aircraft will pull certain amount of g’s the lift force 
will increase which is required in pulling these g’s conditions. 
For example, if an aircraft is pulling 4 g’s the weight of aircraft 
on its wings will increase by 4 times from actual weight and so 
an increase in lift force will be required to support the aircraft. 
The wing tip is moving upward to help in providing necessary 
lift and pulling g’s. 
Uniform pressure: 
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    11.    Meshing of Wing Model 

 
Fig. 59: Meshing of wing model in ANSYS 

 
Fig.60: Meshed Surface of wing 

 
Table 27: Meshing Sizes 

Wing Part Mesh Element Size
Spars 5 mm 

Remaining all Parts 10 mm 
 

 
Fig.61: Internal Structural MemberMeshing 

 
12.   Boundary Conditions 
Wing is fixed from holes at attachment points of spars with 
fuselage and uniform pressure and uniformly varying pressure 
is applied to lower surface of wing. 
 

 
Fig. 62: Fixed End holes of Main Spar  

 

 
Fig. 63: Fixed End holes of Rear Spar  

 

 
Fig. 64: Fixed End holes of Front Spar  

 
 

 
Fig. 65: Elliptically Distributed Pressure on lower surface of wing  
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Fig. 66: Applied Boundary Conditions i.e. Uniform pressure applied upward 

and gravitational acceleration applied downward  
 
Apartfromtheuniformpressureloadingappliedtothemodel.Accel
erationload will be applied to the whole wing which will be 
equal to the corresponding load factor. In ANSYS we applied 
the acceleration load is applied to the all parts of geometry as 
per there weight. The acceleration will be applied in 
downward direction in case of positive load factor and will be 
applied upward in case of negative load factor. For +1 
gitsvaluewillbe9.81m/sec2andfor+2gitsvaluebe19.62m/sec2an
dwillbeapplied downward and for value of +8 G’s it can be 
seen in figure andtable. 

Fig. 67: Uniform Pressure Distribution on Lower Surface of wing 
 

      13.     Identification of Critical Stresses 
The below fig. shows stresses obtained using uniform pressure 
distribution 

Fig. 68: Identification of critical stress 

 

Elliptical Pressure Distribution: 

The elliptical pressure distribution on wing will be 
calculated using following equation, 

In above equation, 

L = 3072 mm (Total length of wing) 

=  

If we divide whole wing in 15 equal parts then, 

 
Table 28: x values 

    x 

204.8 

409.6 

614.4

819.2 

1024 

1228.8 

1433.6

1638.4

1843.2 

2048 

2252.8 

2457.6 

2662.4

2867.2 
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3072 

 
Fig. 69: Elliptically Distributed Pressure on wing 

The above fig. shows elliptical pressure distribution 
on wing using tabular data.  

The below table shows results of critical stresses using 
elliptical pressure distribution. 

Table 29: Results using elliptical pressure distribution 

G’s 
Values 

Main 
Spar 
Von 

Mises 
(MPa) 

Rear 
Spar 
Von 

Mises 
(MPa) 

Front 
Spar 
Von 

Mises 
(MPa)

-1g 97.542 328.61 887.43

-2g 195.08 657.21 1774.9 

-3g 292.62 985.78 2662.2 

1g 123.78 427.07 1159.2 

2g 247.57 854.14 2318.5

3g 371.34 1281.2 3477.6

4g 495.13 1708.3 4636.9 

5g 618.92 2135.4 5796.2 

6g 742.71 2562.4 6955.5 

7g 866.5 2989.5 8114.8

Discussion 
The tables show results for Von Mises stress at each spar under 
different loading conditions. Elliptically distributed loads are 
applied on spars to obtain critical stresses.  

The results calculated shows that main spar can withstand all 
loads without failing while front spar fails at 4g and rear spar 
fails at -2g and 2g loading conditions. 

The location of these critical stresses is at attachment point of 
spars with fuselage. 

 
 
 
III. DISCUSSION ON RESULTS 

The results for analysis of wing spars and wing model is 
obtained separately. For both analysis uniform and elliptical 
pressure distribution is used for simulation in ANSYS. The 
discussion on results obtained from each analysis is done 
below.  

A. Discussion on results obtained from analysis on 
wing spars in ANSYS: 

The results for Von Mises stress at each spar under 
different loading conditions are obtained for identification of 
critical stresses on each spar. Two different materials are used 
i.e. structural steel and titanium Ti-6Al-2Zr-2Sn-2Mo-2Cr-
0.25Si. Uniformly distributed and elliptically distributed 
pressure is applied on spars to obtain critical stresses. The 
results for both pressure distribution for both materials are 
discussed below. 

 

Uniform Pressure  
The result shows that main spar and front spar can 

withstand all stresses without failing however, rear spar fails at 
8g loading condition for structural steel. All results are 
simulated for stresses by comparing them with yield stress of 
materials used in construction of these spars i.e. structural steel 
and it has yield strength of 960 MPa. The locations of critical 
stresses are at attachment point of spars with fuselage. So, 7g is 
maximum allowed g pull condition for uniform loading if spars 
are made of structural steel. 

The result shows that all spars can withstand all stresses 
without failing if titanium Ti-6Al-2Zr-2Sn-2Mo-2Cr-0.25Si 
alloy is used as material. These results are simulated for 
stresses against yield strength of titanium alloy. 

Elliptical Pressure 
The results for structural steel show that main spar can 

withstand all loads however front spar fails at 6g and rear spar 
fails at 7g loading condition. So, 5g is maximum allowed g 
pull condition for front spar and 6g is maximum allowed 
condition for rear spar. The location of these critical stresses is 
at attachment points of spars with fuselage. So, when these 
spars fail it means that they will break or will form cracks if 
loaded beyond above mentioned maximum allowed loading 
conditions. 

The calculated results for titanium Ti-6Al-2Zr-2Sn-2Mo-
2Cr-0.25Si show that main spar carries all loads without failing 
however front spar and rear spar fails at 8g loading conditions. 
So, 7g is maximum allowed g pull condition for both front and 
rear spar and if loaded beyond this i.e. if aircraft will pull 
beyond 7g, front and rear spar will fail. The location of these 
critical stresses is at attachment point of spars.   

B. Discussion on results obtained from analysis on 
wing model in ANSYS: 
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For wing model, uniform and elliptical pressure distribution is 
applied to obtain respective results of critical stresses 
separately for both. The material used for each part of wing 
model for analysis in both cases are listed in material 
properties section. However, for spars steel and titanium Ti-
6Al-4V is used as materials.The tables show results for Von 
Mises stress at each spar underdifferent loading conditions. 
For uniform pressure, all spars withstand applied load without 
failing however for elliptically distributed loads applied on 
spars to obtain critical stresses, the results simulated shows 
that main spar can withstand all loads without failing while 
front spar fails at 4g and rear spar fails at -2g and 2g loading 
conditions.The location of these critical stresses is at 
attachment point of spars with fuselage. 
 

IV. CONCLUSION 

Static structural analysis of wing spars that are made of steel 
and titanium was carried out to determine the location and 
value of critical stress locations at different g’s values and find 
out minimum factor of safety of spars. 

For estimation of critical stress locations and factor of safety of 
spar,  

First, pressure value was calculated that will act as 
load value on spars.  
Since spars are fixed from one end i.e. attachment 
point with fuselage so they will be acting like 
cantilever beams.  

Analytical calculation: 

Analytical calculation was done using uniform 
pressure distribution on cantilever beam  
Then CATIA Models of I and C beams having same 
dimensions for beams as used for analytical 
calculation were made and simulation was done in 
ANSYS for critical stresses using uniform pressure 
distribution. 
Values of bending stress and shear stress were 
calculated and then Von Mises’s stress is calculated 
for each spar beam. 

Material:  

Structural Steel and Titanium Ti-6Al-2Zr-2Sn-2Mo-
2Cr-0.25Si were used as materials and their material 
properties were added in engineering data in ANSYS 
workbench and using their respective yielding 
strengths, value of equivalent stress and minimum 
factor of safety was calculated.  

ANSYS Simulation: 

The CATIA models of spar beams were imported in 
ANSYS workbench for structural analysis and values 
of Von Mises’s stress and factor of safety is 
calculated.  
The pressure was distributed uniformly over spar 
beams.  
The values calculated analytically and using ANSYS 
were compared.  

The results show that Spars of wings can withstand 
8g’s load without failing and critical stress locations 
were found near attachment points of spars with 
fuselage.  
Then individual CAD model of spars were imported 
in ANSYS and then uniform and elliptical pressure 
was applied to simulate critical stresses.  
The results for both materials with uniform and 
elliptical pressure were discussed separately in 
discussion chapter.  
The CAD model of wing was imported in ANSYS 
and static structural analysis was carried out using 
uniform and elliptical pressure distribution and the 
results show that critical stress locations were near 
attachment points of spars with fuselage. 

Discussion on results: 

The solutions obtained using steel as material gives 
acceptable results but using titanium gives better 
results. The main reason is that titanium has better 
strength to weight ratio and it also resists cavitation 
and erosion that makes it to appropriate to use in high 
stress applications.  
The error in analytical calculation and ANSYS 
simulation results is very small and difference in 
values of Factor of Safety is also very small in both 
the cases.    

V. LIMITATIONS 

Certain assumptions were taken into account in the course of 
this research which were mentioned in each section. These 
assumptions pose some limitation on this work. These 
limitations are outline here. 
Assumptions taken during the Finite Element Analysis are 
presentedbelow, 

Weightassumedtobeconstantthroughouttheflight.Aco
nstantweight assumption will produce severe 
loadingcondition 
The assumption that is taken that 95% lift isproduced 
by the wings of the aircraftonly 
A constant pressure distribution was assumed on the 
complete wing of the aircraft which corresponds to 
severloads. 

 
VI. RECOMMENDATIONS 

The recommendations and future work for research are  

Fatigue Life estimation can be carried out using 
results obtained in this research for spars. 

Actual Load Spectrum can be used to determine 
accumulative damage using Miner’s rule. 

This technique can be applied to any aircraft.  
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Variation in weight must be considered since uniform 
weight is considered throughout the analytical 
calculations. 

Analytical Calculation is carried out in cruise 
condition but different conditions can be used in 
calculation of load or pressure value. 

Different materials can be tested using this technique 
for construction of Spars. 
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