
Abstract— The problem addressed in this research is 

robust heading stabilization and control of a class of 

Autonomous Underwater Vehicle. Mathematical 

formulation of this control problem starts from the six 

degree of freedom model of AUV. AUV model is then 

decoupled in heading plane and is considered for 

further investigation for suitable control design. This 

heading plane model is then transformed into an 

equivalent feedback linearizable normal form based on 

input to output linearizable system. Robust controller 

that is SMC is then designed for the stabilized heading 

control of AUV. Furthermore, Extended High Gain 

Observer is used to transform the feedback control into 

output feedback control. Computer Simulated responses 

of designed robust controller and robust output 

feedback controller are presented to show the 

effectiveness of the proposed controllers in different 

conditions. 

Keywords— Robust Control, Sliding Mode Control, High 

Gain Observer, Extended High Gain Observer, Output 

feedback control. 

I. INTRODUCTION 

Underwater robots including semi-autonomous and 

autonomous vehicles gained attraction of researchers 

because of their importance in marine discoveries as well as 

in defense sector. Due to their versatile critical applications, 

they encounter different nonlinear and uncertain 

disturbances and perturbation in parametric coefficients 

exposing them to become unstable. To ensure their stability, 

a robust control is always needed that can cater the 

nonlinearities and disturbances those leads to the un-

stability of the system.  

Scientists and researchers are working to address this 

problem for the past few decades. In this view, Thor I. 

Fossen has carried out a comprehensive study and research 

work in his Handbook [7]. It provides different motions 

control techniques for nonlinear dynamical marine crafts 

with their mathematical models.  

Another author in [5] comprehensively discusses 

modelling, control, design and simulation of Autonomous 

Underwater Vehicles. Researchers in [2] & [3] proposed 

adaptive robust controllers for AUV’s with and without 

input nonlinearities. Whereas cost efficient steering 

stabilizing controller for AUV is presented in [4] in 

conjunction with high gain observer to propose an optimal 

output feedback control. In [6], [7] & [13], authors 

proposed Sliding Mode Control technique to eliminate the 

parametric perturbations effects from AUV’s states. A 

number of researchers adopted this robust control technique 

in their researches addressing the problem under 

consideration.  

Khalil & Esfandiari in [8] proposed their observer design 

to recover uncertain systems state feedback performance 

under matching conditions. Authors in [9] & [10], proposed 

output feedback control based on High Gain Observers. The 

minimum phase, feedback linearizable system is first 

transformed into normal form. Then feedback control 

applied with the full order observer. In [12], Extended High 

Gain Observer (EHGO) is used to estimate the states of the 

system. Whereas disturbance is estimated using EHGO in 

[11]. 

The prime target of this research is to design a robust 

stabilizing heading control for AUV. In order to assure the 

recovery of the systems states output feedback control using 

nonlinear state estimators is used in conjunction with the 

robust controller. To achieve these goals, a generalized 6 

DOF model of underwater vehicles is considered. This 

model is then reduced to heading plane model after some 

assumptions are taken into account.  

The research structure includes mathematical modeling of 

AUV as Section II. Section III covers designing of robust 

control law for heading of AUV. Extended High Gain 

Observer based Output feedback control is covered in 

Section IV incorporating robust control law. Section V 

includes MATLAB simulations of proposed Sliding Mode 

Control with and without perturbations. This section also 

presents simulation results of SMC based Output feedback 

control using EHGO. At last, the conclusion of this whole 

research highlighting the simulations is summarized with its 

possible developments and recommendations for future in 

Section VI. 
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II. MATHEMATICAL MODELING OF AUV 

Mathematical modeling of nonlinear dynamical AUV 

system is a complex and challenging task. In this research, 

already derived generalized model of AUV from [2] is 

considered and is represented in the below equation (1), 

( ) ( ) ( )b b b b b eMv C v v D v v g             (1) 

This generalized model equation of AUV has inertial 

terms related matrix represented as ‘M’, centripetal terms  

matrix denoted by ‘C’, gravitation related matrix 

represented as ‘g’ and damping matrix represented as ‘D’. 

The vector containing control forces of AUV is denoted 

by ' ' . 

 ' 'e is a vector having quantities related to earth fixed 

frame of reference whereas, 

' 'b  is a vector containing quantities related to body 

fixed frame of reference quantities. 

     
T

e x y z               (2) 

The above described vector represents the x, y and z 

positions of the AUV and the orientations associated with 

them i.e roll, pitch and yaw respectively. 

            
T

bv u v w p q r                (3) 

The above vector represents all of the linear and angular 

velocities of the AUV along x, y and z axes.  

Notions used here are referenced from SNAME [14]. 

The vector containing control forces of AUV including 

diving angle ' 's , the rudder angle ' 'r  and propeller 

revolutions ‘n’  is represented in equation (4) below, 

 

    ( ) ( ) ( )s rf f f n           (4) 

 

 

 
Fig. 1: Model of AUV showing earth and body fixed quantities [4] 

 

Earth and body fixed positions and orientations with their 

respective linear and angular velocities are well described in 

Fig.1. Jacobian transformation is used to transform ' 'e  to 

body fixed frame of reference as shown in (5). 

( )e e bJ v              (5) 

Now 6 DOF AUV model can be represented as 

                 
( ) ( ) ( )

( )

b b b b b e

e e b

Mv C v v D v v g

J v

 

 

    
 

 
     (6) 

A generalized state space model for (6) can be 

represented as, 

  ( ) ( )x f x g x u                (7) 

In order to achieve heading control designing goal, 

coupled nonlinear dynamical model of AUV is decoupled. 

Heading plane decoupled model is considered with some 

assumptions including constant surge velocity of u=2m/s 

and small deflections in roll and pitch angles such that, 
05   and 05  . 

Table 1: Heading Model of AUV after decoupling 

Model after decoupling Control Input Required Elements 

Heading ( )
r

t  v(t), r(t), ψ(t) 

Following equations (8), (9), (10) of heading model of 

AUV are extracted after Jacobian transformation and 

decoupling of (6), 

               (m Y ) v Y (Y m )r Yv r v r r rv u                    (8) 

             ( )zz r r v r rI N r N r N v N                     (9) 

        r                (10) 

Heading model of AUV is represented in (11) 

rearranging the above equations, 

 

             

v r

r

v v v

v r

r

zz r zz r zz r

Y YY m
v v r

m Y m Y m Y

N NN
r v r

I N I N I N

r












 
     

 
 

   
   

 
 
 

    (11) 

Representing  
T

s v r   and  s  , the state vector of 

heading model of AUV becomes  
T

s s  .  

For simplification, following change of variables are 

implemented in (11) 

1x v  Linear velocity along y-axis (m/s) 

2x r Rate of change of heading (rad/s) 

3x y   Heading of AUV (rad) 

Now simplified heading model of AUV of (11) becomes. 

 

     

1 11 1 12 2 13

2 21 1 22 2 23

3 2

r

r

x M x M x M

x M x M x M

x x





   
 

   
  

        (12) 

The coefficients M11-M23 are described in the Appendix. 

 

In order to stabilize and control the heading of AUV, 

steering angle ' '  is selected as, 

3y x              (13) 
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III. ROBUST CONTROL DESIGNING 

Heading control system of AUV presented in (12-13) can 

also be represented as, 

    
A B rx M x M

y Cx

 


              (14) 

11 12 13

21 22 23

0 0

0 , , 1

0 1 0 0 0

T

A B

M M M

M M M M M C

     
     

  
     
          

  

 

Since it is necessary to check the controllability of the 

system prior to design its control, controllability matrix rank 

is calculated using the formula 

   
1ˆ ( , ) n

A B B A B A BC M M M M M M M         (15) 

After evaluation the system is found to be controllable as 
ˆ( ) 3rank C n  . 

A.  FEEDBACK LINEARIZATION OF HEADING 

CONTROL SYSTEM OF AUV 

 

In this research, we are dealing with single control input 

that is rudder angle of the AUV expressed as ' '
r

 and single 

control output that is steering angle of AUV expressed as 

' ' . This type of system can be represented as Single-

Input-Single-Output (SISO) as in (16), 

  
rA Bx M M x

y Cx

x  


               (16) 

In this case, the rudder angle control input ' 'r  is 

appearing in two states shown in (12) of heading model of 

AUV, it is not possible to select the control input such that 

it cancels the nonlinearities associated with both of the 

states. In order to solve this problem, the heading model of 

AUV of (12) is transformed to an equivalent feedback 

linearizable system. 

( )*{ ( )}x Ax B x u x                 (17) 

here ,nxn nxqA B   . 

 The functions : :n q n qxqand      are well 

defined in domain 
nD R  that contains origin. And ( )x  

is a non-singular matrix having all values of x in domain D. 

Let us suppose that system equations presented in (12) can 

be represented as system equations described in (17), then 

the nonlinear dynamical model for heading of AUV can be 

linearized using state feedback as presented in (18), 

( ) ( )u x x v                  (18) 

here,  
1( ) ( )x x    

Equivalent feedback linearizable system in (17) can be 

represented as, 

 x Ax Bv                  (19) 

Here ‘v’ will be designed such that the states of the system 

stabilizes. 

  

The system represented in (14) is feedback linearized to 

normal form using transformation matrix. For this purpose, 

the relative degree ' ' of the AUV heading model required 

to be calculated. Output of the system, that is ' ' needs to 

be,  differentiated a number of times until the control input 

' 'r appears.  Differentiating the output, 

3 3 2 2 21 1 22 2 23, , ry x y x x y x M x M x M          

Relative degree of the system is 2 n     

Since the relative degree is less than that of the system, 

therefore the system for heading model of AUV is input to 

output linearizable. 

From theorem 1 of [2], 

 

                            

1

1

( )

( )
( )

( )

( )

n

f

x

x
T x

h x

L h x







 







 
 
 
   
    
    
 
 
 
 

                    (20)          

  

For the system (14),  

     

1( )

( ) ( )

( )f

x

T x h x

L h x






 
   

    
    

 

                 (21) 

 

The condition described in theorem 1 of [2] should be 

fulfilled while choosing
1( )x . As,  13 23 0

T
B M M  

selecting            

1 2

1

13 23

( )
x x

x
M M

                 (22) 

and its differentiation leads to 
1

13 23

1 1
( ) 0x

M M


 
  
 

  

that satisfies ( ) 0k g x  . 

And 

3( )h x x           (22) 

For 
( )

( ) ( )f

h x
L h x f x

x





 

    

11 1 12 2

21 1 22 2

2

( )

M x M x

f x M x M x

x

 
 

 
 
  

       (23) 

 

    0 0 1
h

x





            (24) 

 

       2

( )
( ) . ( )f

h x
L h x f x x

x


 


          (25) 

Resulting (21) to be,  

Proceedings of 2019 16th International Bhurban Conference on Applied Sciences & Technology (IBCAST) 
 Islamabad, Pakistan, 8th – 12th January, 2019 

832



     

1 2

13 23

3

2

( )

x x

M M

T x x

x





 
 

  
   
   
 
 
 

          (26) 

where, 

1 2
1

13 23

1 3

2 2

x x

M M

x

x







 





  

 

Writing 1 2 3,x x and x  in terms of 1 1 2, and   , 

 

2 2x             (27) 

3 1x             (28) 

13

1 13 1 2

23

M
x M

M
              (29) 

 

Substituting the values of 1 2 3,x x and x  in (12) results in, 

3 1 2 2x x      

1 2                 (30) 

 

2 2 21 13 23 1 13 2 22 2 23( ) rx M M M M M M            

2 13 21 23 1 13 21 22 2 23( ) ( ) rM M M M M M M        (31) 

 

1 2
1

13 23

x x

M M
   , its differentiation results in,  

1 2
1

13 23

x x

M M
    and solving yields, 

13 21 13 2111 12 22

1 11 1 22

23 13 13 2323

M M M MM M M
M

M M M MM
       

  
  

   
    (32) 

 

Normal form of heading model of AUV is presented in (33) 

combining equations (30-32), 

 

     

1 1 1 2 2

1 2

2 3 1 4 2 5 r

W W

W W W

  

 

   

  
 

 
 

   

        (33) 

 

The coefficients M1-M5 are described in the Appendix. 

 

First state equation out of three shows the internal 

dynamics of the system having no direct connection to the 

output. Internal dynamics of the systems is verified to be 

BIBO stable with zero dynamics condition. Now controller 

needs to be calculated for AUV heading models external 

states. In order to stabilize the AUV heading system in 

described in (33), 
r  must be chosen to remove all the 

nonlinearities in the system. To achieve this objective, a 

distributive controller is proposed in (34), 

 

  
r u v              (34) 

here  3 1 4 2

5

1
u W W

W
      

B. CONTROL DESING USING SLIDING MODE 

CONTROLLER 

 

Sliding Mode Control is considered as basic control 

approach in the development of robust control for the 

nonlinear dynamical system. SMC is needed to be designed 

for heading model of AUV to robustly stabilize the system. 

There are two phases in implementing the SMC. In the first 

phase, also called “reaching phase”, systems states 

trajectories are brought to a sliding manifold close to origin 

within finite time. The second phase is called the ‘sliding 

phase’, once the state trajectories reaches the sliding 

manifold they should not leave it to provide semi global 

bounded solution. 

 

One of the objectives of implementing SMC is that the 

systems states tracks the desired reference trajectories. The 

error state vector can be represented as, 

      
1 1

2 2

D

D

D

x x
X X X

x x


  



 
 
 

      (35) 

  For SMC designing, a sliding surface or manifold 

needed to be defined, such as  

         T
S X               (36) 

The sliding surface can be represented coordinate as, 

            1 1

1 2

2 2

D

D

x x
s s

x x







 
 
 

                (37) 

Choosing the coefficients of surface vector ‘S’ such that  

lim 0 . lim 0
t t

i e 
 

   ensuring   lim lim( ) 0
D

t t

X X X
 

     

 

Considering energy lyapunov function, 

21
( )

2
V             (38) 

Conditions need to be determined that ensures the stability 

of the system. Taking derivative of lyapunov function, 

   
22

( )V              (39) 

here ' ' is a design parameter and needs to be positive 

definite. 

 

The condition imposed in (39) can also be expressed as, 
2
sgn( )            (40)  

Differentiating the sliding manifold defined in (37) yields 
T

S X           (41) 

having
r D

X AX B X   . Now (41) becomes, 

2
( ) sgn( )

T

s D
S AX B X         

Solving for control input ' '
s

  yields, 

Proceedings of 2019 16th International Bhurban Conference on Applied Sciences & Technology (IBCAST) 
 Islamabad, Pakistan, 8th – 12th January, 2019 

833



 

 
1 1 1 2

( ) ( ) ( ) sgn( )
T T T T T

r D
S B S AX S B S X S B  

  
        (42) 

 

The controller described in (42) is based on two types of 

controllers. The first controller is the stabilizing controller 

that is expressed as, 

       
1 1

( ) ( )
T T T T

r D
S B S AX S B S X

 
        (43) 

The second controller is the switching controller that is 

expressed as, 

       
1 2

( ) sgn( )
T

r
S B  


            (44) 

Since
D

X is constant in our case, the stabilizing controller of 

(43) becomes, 

     
1

( )
T T

s
S B S AX


          (45) 

Now under stabilizing control 
s

PX    and matrix P can 

be selected such that it places eigenvalues of the closed loop 

system to ensure the convergence of the state trajectories at 

the sliding surface within finite time. Now the closed loop 

system becomes, 

( )X A BP X           (46) 

Since 0
T

S X   , so 0
T

S X   and therefore, 

0
T

S X    resulting ( ) 0
T

S A BP   or   

     ( ) 0
T

A BP S              (47) 

The sliding surf face vector S coefficients is the eigenvector 

of ( )
T

A BP  that is associated with null vector. 

The heading model of AUV in error coordinates is now can 

be expressed as, 

 
1 2

( ) ( ) sgn( )
T

D
X A BP X BPX S B  


       (48) 

Due to the discontinuous nature of  sgn( ) , chattering 

occurs. To compensate this problem ( )sat



 is introduced. 

' ' is a small design parameter such that 0 1  .   

Now the controller becomes, 

1 2
( ) ( ) ( )

T

r r r D
P X X S B sat


   




         (49) 

 

The resultant closed loop system becomes,  

1 2
( ) ( ) ( )

T

D
X A BP X BPX S B sat







        (50) 

 

The proposed SMC is defined in (51), 

    2

3 1 4 2 1 2

5

1
{( ) / }r M M sat

M
             (51) 

The values of design parameters considered are 1
( ) 1

T
S B


   

2
0.9 0.5and   . 

IV. EXTENDED HIGH GAIN OBSERVER BASED 

OUTPUT FEEDBACK CONTROL 

 

In order to recover unmeasured states of heading control 

system of AUV, an observer needs to be introduced with the 

proposed controller. Therefore observability of the system 

under consideration needs to be tested. 

 

The observability matrix rank is calculated in order to 

evaluate the observability of the system 

 

           1( , )
T

n

A A AO W C C CW CW


                (52) 

 

After evaluation the system is found to be observable as 
ˆ( ) 3rank O n  . 

 

Due to its effectiveness in estimating systems states, 

EHGO has a unique position in the family of nonlinear state 

estimators. Therefore, the proposed SMC controller in (51) 

is transformed into EHGO based robust output feedback 

control to achieve the requirements of effective states 

estimation. 

 

The basic structure of an EHGO is different from that of 

HGO in a sense that one extra state ˆ' ' is augmented in the 

structure of HGO. Now the EHGO set of equations for the 

external states of the system in (33) becomes, 

 

            

1 2 1 1

2 3 1 4 2 5 2 1

3 1

ˆ ˆ ˆ( )

ˆ ˆ ˆˆ ( )

ˆˆ ( )

r

y

M M M y

y

   

      

  

   
 
 

      
 

  
 

 (53) 

 

Here the gains are selected such that, 

 

   

1

2

2

3
3

2 /

1/

1/



 

 

  
  

   
     

            (54) 

 

And ‘  ’ needs to be selected as small design parameter so 

that it can reduce error in estimated and actual states as 

0  . 

 

Finally, SMC based robust output feedback controller using 

EHGO is proposed in (55).  

        

2

3 1 4 2 1 2

5

1 ˆ ˆ ˆˆ {( ) / }r M M sat
M

           
 

  (55) 
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V. SIMULATIONS 

For simulation purposes, the numerical values of AUV 

hydrodynamics coefficients, added masses and physical 

parameters are used of REMUS 100. Values of  and   

are selected such that, 0.3 , 0.5   . Initial conditions 

of AUV used are    0.02 0.09 0.01
T T

v r    . The 

saturation limit imposed on the controller output is 0.35 rad 

(≈200). 

A. Sliding Mode Control 

Systems states of heading model of AUV using Sliding 

Mode Controller of (51) are shown in Fig.2 and Fig.3.  

 

 
Fig. 2 States Responses using Sliding Mode Control 

 

Systems states responses using Sliding mode control with 

40% parametric perturbations of the system are shown in 

Fig.3. 

 
Fig. 3: States Responses using Sliding Mode Control under Perturbations 

 

The steering angle error between the two cases (with and 

without perturbation) applying SMC is shown in Fig.4. 

 
Fig. 4 Steering angle error with and without perturbation 

B. Extended High Gain Observer 

An EHGO based robust output feedback control proposed 

in (55) is used for simulation purposes. The proposed 

controller in Fig.5 and Fig.6 effectively estimates the 

steering angle and its rate. 

  

 
 

Fig. 5 Steering Angle Response using SMC with and without EHGO 

 

 

 
Fig. 6: Steering Angle Rate Response using SMC with and without EHGO 

 

Both of the system states are estimated efficiently using 

SMC based EHGO. 

VI. CONCLUSION 

In this research, nonlinear dynamical model of AUV is 

taken as a benchmark system and is decoupled in heading 

plane. This system is then transformed into a feedback 

linearized system and a robust SMC is proposed. The 

effectiveness of SMC is proved in Fig.4 showing an error of 

only about 0.002 rad in steering angle when a parametric 

perturbation of 40% is introduced into the system. In Fig.5 

and Fig.6 the steering angle and its rate are perfectly 

estimated by the EHGO showing effectiveness of the 

proposed controller. It is concluded that by using the SMC 

controller with EHGO, the system trajectories converges to 

the sliding surface in finite time. Also the closed loop 

system trajectories will stay be bounded in the bounded 

layer described by  . 

 

Future recommendations includes output feedback control 

using sliding mode observer and adaptive output feedback 

control of AUV using nonlinear state estimators. Higher 

order sliding mode output feedback control of AUV using 

nonlinear Extended High Gain Observer (EHGO) as state 

estimators. 
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